Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lineage-specific protein repeat expansions and contractions reveal malleable regions of immune genes

Abstract

Functional diversification, a higher evolutionary rate, and intense positive selection help a limited number of immune genes interact with many pathogens. Repeats in protein-coding regions are a well-known source of functional diversification, adaptive variation, and evolutionary novelty in a short time. Repeats play a crucial role in biochemical functions like functional diversification of transcription regulation, protein kinases, cell adhesion, signaling pathways, morphogenesis, DNA repair, recombination, and RNA processing. Repeat length variation can change the associated protein’s interaction, efficacy, and overall protein network. Repeats have an intrinsic unstable nature and can potentially evolve rapidly and expedite the acquisition of complex phenotypic traits and functions. Because of their ability to generate rapid, adaptive variations over short evolutionary distances, repeats are considered “tuning knobs.” Repeat length variation in specific genes, like RUNX2 and ALX4, is associated with morphological and physiological changes across vertebrates. Here we study repeat length variation as a potent source of species-specific immune diversification across several clades of tetrapods. Moreover, we provide a clade-wise comprehensive list of immune genes with repeat types for future studies of morphological/evolutionary changes within species groups. We observe significant repeat length variation of FASLG and C1QC in Rodentia and Primates’ contrasting species groups, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Repeat-containing immune genes specialize in specific functions.
Fig. 2: Repeats are preferred in specific GC% range genes.
Fig. 3: Genes may contain multiple repeats.
Fig. 4: Repeats show length volatility across species and clades.
Fig. 5: Global patterns of repeat-length variability across clades.
Fig. 6: PolyP repeat shows lineage-specific length variability in the FASLG gene in the Rodentia clade.

Similar content being viewed by others

Data availability

All data associated with this study are available in the Supplementary Materials, and data and scripts used for analysis are provided in an easy-to-browse format: https://github.com/ceglablokdeep/Immune_genes_repeats. A copy of the data has been uploaded on Mendeley datasets with https://doi.org/10.17632/8zxtjh8fjs.1.

References

  1. Shultz AJ, Sackton TB. Immune genes are hotspots of shared positive selection across birds and mammals. Elife. 2019;8:e41815.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Enard D, Cai L, Gwennap C, Petrov DA. Viruses are a dominant driver of protein adaptation in mammals. Elife. 2016;5:e12469.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kosiol C, Vinar T, Da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, et al. Patterns of positive selection in six Mammalian genomes. PLoS Genet. 2008;4:e1000144.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Alcaide M, Edwards SV. Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evol. 2011;28:1703–15.

    Article  CAS  PubMed  Google Scholar 

  5. Carpentier KS, Geballe AP. An evolutionary view of the arms race between protein kinase R and large DNA viruses. J Virol. 2016;90:3280–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB, Dennis T, et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol. 2017;15:e2004086.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Solbakken MH, Rise ML, Jakobsen KS, Jentoft S. Successive losses of central immune genes characterize the Gadiformes’ alternate immunity. Genome Biol Evol. 2016;8:3508–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Blumer M, Brown T, Freitas MB, Destro AL, Oliveira JA, Morales AE, et al. Gene losses in the common vampire batilluminate molecular adaptations to blood feeding. Sci Adv. 2022;8:eabm6494.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zimmer MM, Kibe A, Rand U, Pekarek L, Ye L, Buck S, et al. The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting. Nat Commun. 2021;12:1–15.

    Article  Google Scholar 

  10. Yang L, Fu J, Zhou Y. Circular RNAs and their emerging roles in immune regulation. Front Immunol. 2018;9:2977.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vierbuchen T, Fitzgerald KA. Long non-coding RNAs in antiviral immunity. Semin Cell Dev Biol. 2021;111:126–34.

    Article  CAS  PubMed  Google Scholar 

  12. Persi E, Wolf YI, Koonin EV. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat Commun.2016;7:13570.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D. A census of protein repeats. J Mol Biol. 1999;293:151–60.

    Article  CAS  PubMed  Google Scholar 

  14. Albà MM, Tompa P, Veitia RA. Amino acid repeats and the structure and evolution of proteins. Gene and Protein Evolution. KARGER: Basel. 2007;3:119–30.

    Google Scholar 

  15. Persi E, Horn D. Systematic analysis of compositional order of proteins reveals new characteristics of biological functions and a universal correlate of macroevolution. PLoS Comput Biol. 2013;9:e1003346.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Andrade MA, Perez-Iratxeta C, Ponting CP. Protein repeats: structures, functions, and evolution. J Struct Biol. 2001;134:117–31.

    Article  CAS  PubMed  Google Scholar 

  17. Karlin S, Brocchieri L, Bergman A, Mrázek J, Gentles AJ. Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci. 2002;99:333–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pellegrini M, Marcotte EM, Yeates TO. A fast algorithm for genome-wide analysis of proteins with repeated sequences. Proteins Struct Funct Genet. 1999;35:440–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kashi Y, King DG. Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 2006;22:253–9.

    Article  CAS  PubMed  Google Scholar 

  20. King DG, Soller M, Kashi Y. Evolutionary tuning knobs. Endeavour. 1997;21:36–40.

    Article  Google Scholar 

  21. Lynch VJ, Wagner GP. Resurrecting the role of transcription factor change in developmental evolution. Evolution (N. Y). 2008;62:2131–54.

    CAS  Google Scholar 

  22. Hancock JM, Simon M. Simple sequence repeats in proteins and their significance for network evolution. Gene. 2005;345:113–8.

    Article  CAS  PubMed  Google Scholar 

  23. Myers KA, Rahi-Saund V, Davison MD, Young JA, Cheater AJ, Stern PL. Isolation of a cDNA encoding 5T4 oncofetal trophoblast glycoprotein. An antigen associated with metastasis contains leucine-rich repeats. J Biol Chem. 1994;269:9319–24.

    Article  CAS  PubMed  Google Scholar 

  24. Eldon E, Kooyer S, D’Evelyn D, Duman M, Lawinger P, Botas J, et al. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development. 1994;120:885–99.

    Article  CAS  PubMed  Google Scholar 

  25. Kobe B, Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol. 1995;5:409–16.

    Article  CAS  PubMed  Google Scholar 

  26. Huntley M, Golding GB. Evolution of simple sequence in proteins. J Mol Evol. 2000;51:131–40.

    Article  CAS  PubMed  Google Scholar 

  27. Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable tandem repeats accelerate evolution of coding and regulatory sequences. 2010. https://doi.org/10.1146/annurev-genet-072610-155046.

  28. Fondon JW, Garner HR. Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci USA. 2004;101:18058–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pajic P, Shen S, Qu J, May AJ, Knox S, Ruhl S, et al. A mechanism of gene evolution generating mucin function. Sci Adv. 2022;8. https://doi.org/10.1126/SCIADV.ABM8757.

  30. Björklund ÅK, Ekman D, Elofsson A. Expansion of protein domain repeats. PLoS Comput Biol. 2006;2:0959–70.

    Article  Google Scholar 

  31. Newton AH, Pask AJ. Evolution and expansion of the RUNX2 QA repeat corresponds with the emergence of vertebrate complexity. Commun Biol. 2020;3:771.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fondon JW, Garner HR. Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci USA. 2004;101:18058–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mevel R, Draper JE, Lie-a-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development. 2019;146:1–19.

    Article  Google Scholar 

  34. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.

    Article  CAS  PubMed  Google Scholar 

  35. Gaillard JL, Berche P, Frehel C, Gouln E, Cossart P. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell. 1991;65:1127–41.

    Article  CAS  PubMed  Google Scholar 

  36. Kȩdzierski Ł, Montgomery J, Curtis J, Handman E. Leucine-rich repeats in host-pathogen interactions. Arch Immunol Ther Exp (Warsz). 2004;52:104–12.

    PubMed  Google Scholar 

  37. Reeder JC, Brown GV. Antigenic variation and immune evasion in Plasmodium falciparum malaria. Immunol Cell Biol. 1996;74:546–54.

    Article  CAS  PubMed  Google Scholar 

  38. Schofield L. On the function of repetitive domains in protein antigens of Plasmodium and other eukaryotic parasites. Parasitol Today. 1991;7:99–105.

    Article  CAS  PubMed  Google Scholar 

  39. Cohn M. The immune system: a weapon of mass destruction invented by evolution to even the odds during the war of the DNAs. Immunol Rev. 2002;185:24–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sieling PA, Modlin RL. Toll-like receptors: Mammalian ‘taste receptors’ for a smorgasbord of microbial invaders. Curr Opin Microbiol. 2002;5:70–5.

    Article  CAS  PubMed  Google Scholar 

  41. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45.

    Article  CAS  PubMed  Google Scholar 

  42. Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50:D988–95.

    Article  CAS  PubMed  Google Scholar 

  43. Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016;44:D7.

    Article  CAS  Google Scholar 

  44. Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 2017;34:1812–9.

    Article  CAS  PubMed  Google Scholar 

  45. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–8.

    Article  CAS  PubMed  Google Scholar 

  46. Harrison PM. fLPS 2.0: rapid annotation of compositionally-biased regions in biological sequences. PeerJ. 2021;9:e12363.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.

    Article  Google Scholar 

  49. R Core Team. R: a language and environment for statistical computing. 2021. https://www.r-project.org.

  50. Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol. 2015;32:1342–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kosakovsky Pond SL, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–79.

    Article  Google Scholar 

  52. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.

    Article  CAS  PubMed  Google Scholar 

  53. Ge SX, Jung D, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9.

    Article  CAS  PubMed  Google Scholar 

  54. Montgomerie S, Cruz JA, Shrivastava S, Arndt D, Berjanskii M, Wishart DS. PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation. Nucleic Acids Res. 2008;36:W202–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Omasits U, Ahrens CH, Müller S, Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30:884–6.

    Article  CAS  PubMed  Google Scholar 

  56. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018;27:14–25.

    Article  CAS  PubMed  Google Scholar 

  59. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, functional, and evolutionary characteristics of proteins with repeats. Mol Biol. 2021;55:683–704.

    Article  CAS  Google Scholar 

  61. Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. J Immunol. 2013;191:4475–87.

    CAS  PubMed  Google Scholar 

  62. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449:819–26.

    Article  CAS  PubMed  Google Scholar 

  63. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  64. Inohara N, Chamaillard M, McDonald C, Nuñez G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem. 2005;74:355–83.

    Article  CAS  PubMed  Google Scholar 

  65. Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442:39–44.

    Article  CAS  PubMed  Google Scholar 

  66. Schatz DG, Oettinger MA, Schlissel MS. V (D) J RECOMBINATION: molecular biology and regulation. Annu Rev Immunol. 1992;10:359–83.

    Article  CAS  PubMed  Google Scholar 

  67. Cocquet J, De Baere E, Caburet S, Veitia RA. Compositional biases and polyalanine runs in humans. Genetics. 2003;165:1613–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Albà MM, Guigó R. Comparative analysis of amino acid repeats in rodents and humans. Genome Res. 2004;14:549–54.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Mier P, Alanis-Lobato G, Andrade-Navarro MA. Context characterization of amino acid homorepeats using evolution, position, and order. Proteins Struct Funct Bioinforma. 2017;85:709–19.

    Article  CAS  Google Scholar 

  70. Jorda J, Xue B, Uversky VN, Kajava AV. Protein tandem repeats – the more perfect, the less structured. FEBS J. 2010;277:2673–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Huntley MA, Golding GB. Simple sequences are rare in the Protein Data Bank. Proteins Struct Funct Genet. 2002;48:134–40.

    Article  CAS  PubMed  Google Scholar 

  72. Wright PE, Dyson HJ. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J Mol Biol. 1999;293:321–31.

    Article  CAS  PubMed  Google Scholar 

  73. Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005;6:197–208.

    Article  CAS  PubMed  Google Scholar 

  74. Tompa P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 2005;579:3346–54.

    Article  CAS  PubMed  Google Scholar 

  75. Dosztányi Z, Chen J, Dunker AK, Simon I, Tompa P. Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res. 2006;5:2985–95.

    Article  PubMed  Google Scholar 

  76. Tompa P. Intrinsically unstructured proteins evolve by repeat expansion. BioEssays. 2003;25:847–55.

    Article  CAS  PubMed  Google Scholar 

  77. Chavali S, Chavali PL, Chalancon G, de Groot NS, Gemayel R, Latysheva NS, et al. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. Nat Struct Mol Biol. 2017;24:765–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Jones AL, Hulett MD, Parish CR. Histidine-rich glycoprotein: a novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol Cell Biol. 2005;83:106–18.

    Article  CAS  PubMed  Google Scholar 

  79. Koide T. Amino acid sequence of human histidine-rich glycoprotein derived from the nucleotide sequence of its cDNA. Biochemistry. 1986;25:2212–20.

    Article  Google Scholar 

  80. Morgan WT. Interactions of the Histidine-Rich glycoprotein of serum with metals. Biochemistry. 1981;20:1054–61.

    Article  CAS  PubMed  Google Scholar 

  81. Hawash MBF, Sanz-Remón J, Grenier JC, Kohn J, Yotova V, Johnson Z, et al. Primate innate immune responses to bacterial and viral pathogens reveals an evolutionary trade-off between strength and specificity. Proc Natl Acad Sci USA. 2021;118:1–10.

    Article  Google Scholar 

  82. Hancock JM, Worthey EA, Santibáñez-Koref MF. A role for selection in regulating the evolutionary emergence of disease-causing and other coding CAG repeats in humans and mice. Mol Biol Evol. 2001;18:1014–23.

    Article  CAS  PubMed  Google Scholar 

  83. Pelletier N, Champagne N, Stifani S, Yang XJ. MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene. 2002;21:2729–40.

    Article  CAS  PubMed  Google Scholar 

  84. Komori T. Regulation of bone development and maintenance by Runx2. Front Biosci. 2008;13:898.

    Article  CAS  PubMed  Google Scholar 

  85. Nagata S, Golstein P. The Fas death factor. Science (80-). 1995;267:1449–56.

    Article  CAS  Google Scholar 

  86. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science (80-). 1998;281:1305–8.

    Article  CAS  Google Scholar 

  87. Li Y, Sun Y, Cai M, Zhang H, Gao N, Huang H, et al. Fas ligand gene (Faslg) plays an important role in nerve degeneration and regeneration after rat sciatic nerve injury. Front Mol Neurosci. 2018;11:1–13.

    Article  Google Scholar 

  88. Sun M, Lee S, Karray S, Levi-Strauss M, Ames KT, Fink PJ. Cutting Edge: two distinct Motifs within the Fas ligand tail regulate Fas ligand-mediated costimulation. J Immunol. 2007;179:5639–43.

    Article  CAS  PubMed  Google Scholar 

  89. Blott EJ, Bossi G, Clark R, Zvelebil M, Griffiths GM. Fas ligand is targeted to secretory lysosomes via a proline-rich domain in its cytoplasmic tail. J Cell Sci. 2001;114:2405–16.

    Article  CAS  PubMed  Google Scholar 

  90. McCord JP, Grove TZ. Engineering repeat proteins of the immune system. Biopolymers. 2020;111. https://doi.org/10.1002/bip.23348.

  91. Zhang M, Wang F, Li S, Wang Y, Bai Y, Xu X. TALE: a tale of genome editing. Prog Biophys Mol Biol. 2014;114:25–32.

    Article  CAS  PubMed  Google Scholar 

  92. Kelley J, De Bono B, Trowsdale J. IRIS: a database surveying known human immune system genes. Genomics. 2005;85:503–11.

    Article  CAS  PubMed  Google Scholar 

  93. Abeler-Dörner L, Laing AG, Lorenc A, Ushakov DS, Clare S, Speak AO, et al. High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Nat Immunol. 2020;21:86–100.

    Article  PubMed  Google Scholar 

  94. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, et al. INTERFEROME v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2013;41:D1040-6.

Download references

Acknowledgements

We thank the Ministry of Human Resource Development for fellowship to LT and SS.

Funding

Computational analyses were done on the Har Gobind Khorana Computational Biology cluster established and maintained by combining funds from IISER Bhopal under Grant # INST/BIO/2017/019, IYBA 2018 from the Department of Biotechnology (Grant no. BT/11/IYBA/2018/03), and ECRA from Science and Engineering Research Board (Grant no. ECR/2017/001430).

Author information

Authors and Affiliations

Authors

Contributions

LT and SS wrote the manuscript with NV. LT and SS analyzed the data and generated the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nagarjun Vijay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teekas, L., Sharma, S. & Vijay, N. Lineage-specific protein repeat expansions and contractions reveal malleable regions of immune genes. Genes Immun 23, 218–234 (2022). https://doi.org/10.1038/s41435-022-00186-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-022-00186-4

Search

Quick links