Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of genetic polymorphisms in IL-23R and IL-17A with the susceptibility to IgA nephropathy in a Chinese Han population

Abstract

IgA Nephropathy (IgAN) is one of the most common causes of chronic kidney damage worldwide. Identifying new genetic factors associated with IgAN risk is of invaluable importance. To explore the association between polymorphisms of IL-23R and IL-17A and the susceptibility of IgAN, 164 IgAN patients and 192 healthy controls were genotyped for five SNPs in a Chinese Han population. A comparative analysis between genotype distributions, clinical indexes and pathological grades in the IgAN patients was also performed. The GG genotype and a G allele of rs7517847 were associated with a decreased IgAN risk (OR: 0.545; 95% CI: 0.299–0.993; p = 0.046; OR: 0.730; 95% CI: 0.541–0.984; p = 0.039) compared to the TT genotype and T allele respectively. Furthermore, the AA genotype of rs2275913 appeared to reduce the IgAN risk (OR: 0.405; 95% CI: 0.209–0.786; p = 0.007) compared to the GG genotype. Consistently, individuals harboring an AA genotype had a lower IgAN risk (OR: 0.380; 95% CI: 0.211–0.686; p = 0.001) under the recessive model. Our study demonstrated for the first time the significant associations of rs7517847 in IL-23R and rs2275913 in IL-17A with the risk of IgAN in Chinese Han.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linkage disequilibrium structure of the selected four SNPs on IL-23R gene (rs6693831, rs7517847, rs1884444, and rs10889677) and one SNP rs2275913 on IL-17A gene.

Similar content being viewed by others

References

  1. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368:2402–14.

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009;119:1668–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Reid S, Cawthon PM, Craig JC, Samuels JA, Molony DA, Strippoli GF. Non-immunosuppressive treatment for IgA nephropathy. Cochrane Database Syst Rev. 2011;3:03962.

    Google Scholar 

  4. Geddes CC, Rauta V, Gronhagen-Riska C, Bartosik LP, Jardine AG, Ibels LS, et al. A tricontinental view of IgA nephropathy. Nephrol Dial Transpl. 2003;18:1541–8.

    Article  Google Scholar 

  5. Koyama A, Igarashi M, Kobayashi M. Natural history and risk factors for immunoglobulin A nephropathy in Japan. Research Group on Progressive Renal Diseases. Am J Kidney Dis. 1997;29:526–32.

    Article  CAS  PubMed  Google Scholar 

  6. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011;43:321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu XQ, Li M, Zhang H, Low HQ, Wei X, Wang JQ, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet. 2011;44:178–82.

    Article  PubMed  Google Scholar 

  8. Sallusto F, Baggiolini M. Chemokines and leukocyte traffic. Nat Immunol. 2008;9:949–52.

    Article  CAS  PubMed  Google Scholar 

  9. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.

    Article  CAS  PubMed  Google Scholar 

  10. Van Kooten C, Boonstra JG, Paape ME, Fossiez F, Banchereau J, Lebecque S, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol. 1998;9:1526–34.

    Article  PubMed  Google Scholar 

  11. Paust HJ, Turner JE, Steinmetz OM, Peters A, Heymann F, Holscher C, et al. The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis. J Am Soc Nephrol. 2009;20:969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iyoda M, Shibata T, Kawaguchi M, Hizawa N, Yamaoka T, Kokubu F, et al. IL-17A and IL-17F stimulate chemokines via MAPK pathways (ERK1/2 and p38 but not JNK) in mouse cultured mesangial cells: synergy with TNF-alpha and IL-1beta. Am J Physiol Ren Physiol. 2010;298:F779–87.

    Article  CAS  Google Scholar 

  13. Kitching AR, Holdsworth SR. The emergence of TH17 cells as effectors of renal injury. J Am Soc Nephrol. 2011;22:235–8.

    Article  CAS  PubMed  Google Scholar 

  14. Gan PY, Steinmetz OM, Tan DS, O’Sullivan KM, Ooi JD, Iwakura Y, et al. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol. 2010;21:925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin JR, Wen J, Zhang H, Wang L, Gou FF, Yang M, et al. Interleukin-17 promotes the production of underglycosylated IgA1 in DAKIKI cells. Ren Fail. 2018;40:60–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus. 2000;9:589–93.

    Article  CAS  PubMed  Google Scholar 

  17. Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont MC, Ranchin B, et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol. 2009;10:778–85.

    Article  CAS  PubMed  Google Scholar 

  18. Watorek E, Klinger M. IL-17A as a potential biomarker of IgA nephropathy. Pol Arch Med Wewn. 2015;125:204–6.

    PubMed  Google Scholar 

  19. Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Debska-Slizien A, Witkowski JM. T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol. 2019;23:291–303.

    Article  CAS  PubMed  Google Scholar 

  20. Kuka M, Baronio R, Valentini S, Monaci E, Muzzi A, Aprea S, et al. Src kinases are required for a balanced production of IL-12/IL-23 in human dendritic cells activated by Toll-like receptor agonists. PLoS ONE. 2010;5:e11491.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Miller JM, Bidula SM, Jensen TM, Reiss CS. Vesicular stomatitis virus modified with single chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo. Int J Interferon Cytokine Mediat Res. 2010;2010:63–72.

    PubMed  PubMed Central  Google Scholar 

  22. Peral de Castro C, Jones SA, Ni Cheallaigh C, Hearnden CA, Williams L, Winter J, et al. Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion. J Immunol. 2012;189:4144–53.

    Article  CAS  PubMed  Google Scholar 

  23. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699–708.

    Article  CAS  PubMed  Google Scholar 

  25. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14:585–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  CAS  PubMed  Google Scholar 

  28. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McInnes IB, Mease PJ, Ritchlin CT, Rahman P, Gottlieb AB, Kirkham B, et al. Secukinumab sustains improvement in signs and symptoms of psoriatic arthritis: 2 year results from the phase 3 FUTURE 2 study. Rheumatology. 2017;56:1993–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abdulahad WH, Stegeman CA, Limburg PC, Kallenberg CG. Skewed distribution of Th17 lymphocytes in patients with Wegener’s granulomatosis in remission. Arthritis Rheum. 2008;58:2196–205.

    Article  PubMed  Google Scholar 

  31. Nogueira E, Hamour S, Sawant D, Henderson S, Mansfield N, Chavele KM, et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol Dial Transpl. 2010;25:2209–17.

    Article  CAS  Google Scholar 

  32. Zhang Z, Kyttaris VC, Tsokos GC. The role of IL-23/IL-17 axis in lupus nephritis. J Immunol. 2009;183:3160–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kyttaris VC, Zhang Z, Kuchroo VK, Oukka M, Tsokos GC. Cutting edge: IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6-lpr/lpr mice. J Immunol. 2010;184:4605–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ma YC, Zuo L, Chen JH, Luo Q, Yu XQ, Li Y, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol. 2006;17:2937–44.

    Article  PubMed  Google Scholar 

  35. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lee HS, Lee MS, Lee SM, Lee SY, Lee ES, Lee EY, et al. Histological grading of IgA nephropathy predicting renal outcome: revisiting H. S. Lee’s glomerular grading system. Nephrol Dial Transpl. 2005;20:342–8.

    Article  Google Scholar 

  37. Working Group of the International Ig ANN, the Renal Pathology Society, Cattran DC, Coppo R, Cook HT, Feehally J, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76:534–45.

    Article  Google Scholar 

  38. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50:892–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peng Z, Tian J, Cui X, Xian W, Sun H, Li E, et al. Increased number of Th22 cells and correlation with Th17 cells in peripheral blood of patients with IgA nephropathy. Hum Immunol. 2013;74:1586–91.

    Article  CAS  PubMed  Google Scholar 

  40. Lin FJ, Jiang GR, Shan JP, Zhu C, Zou J, Wu XR. Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand J Clin Lab Invest. 2012;72:221–9.

    Article  CAS  PubMed  Google Scholar 

  41. Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80:273–90.

    Article  CAS  PubMed  Google Scholar 

  42. Nunez C, Dema B, Cenit MC, Polanco I, Maluenda C, Arroyo R, et al. IL23R: a susceptibility locus for celiac disease and multiple sclerosis? Genes Immun. 2008;9:289–93.

    Article  CAS  PubMed  Google Scholar 

  43. Yang B, Xu Y, Liu X, Huang Z, Wang L. IL-23R and IL-17A polymorphisms correlate with susceptibility of ankylosing spondylitis in a Southwest Chinese population. Oncotarget. 2017;8:70310–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Mao Q, Shen L, Tian Y, Yu C, Zhu WM, et al. Interleukin-23 receptor genetic polymorphisms and Crohn’s disease susceptibility: a meta-analysis. Inflamm Res. 2010;59:607–14.

    Article  CAS  PubMed  Google Scholar 

  45. Dong H, Li Q, Zhang Y, Tan W, Jiang Z. IL23R gene confers susceptibility to ankylosing spondylitis concomitant with uveitis in a Han Chinese population. PLoS ONE. 2013;8:e67505.

    Article  CAS  Google Scholar 

  46. Liu S, He H, Yu R, Han L, Wang C, Cui Y, et al. The rs7517847 polymorphism in the IL-23R gene is associated with gout in a Chinese Han male population. Mod Rheumatol. 2015;25:449–52.

    Article  CAS  PubMed  Google Scholar 

  47. Fischer S, Kovesdi E, Magyari L, Csongei V, Hadzsiev K, Melegh B, et al. IL23R single nucleotide polymorphisms could be either beneficial or harmful in ulcerative colitis. World J Gastroenterol. 2017;23:447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu WD, Xie QB, Zhao Y, Liu Y. Association of Interleukin-23 receptor gene polymorphisms with susceptibility to Crohn’s disease: a meta-analysis. Sci Rep. 2015;5:18584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhong L, Wang W, Song H. Complex role of IL-23R polymorphisms on ankylosing spondylitis: a meta-analysis. Expert Rev Clin Immunol. 2018;14:635–43.

    Article  CAS  PubMed  Google Scholar 

  50. Zhai C, Li S, Feng W, Shi W, Wang J, Wang Q, et al. Association of interleukin-17a rs2275913 gene polymorphism and asthma risk: a meta-analysis. Arch Med Sci. 2018;14:1204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gao JF, Zhang H, Lv J, Wang L, Fan YY. Associations of the IL-17A rs2275913 and IL-17F rs763780 polymorphisms with the risk of digestive system neoplasms: a meta-analysis. Int Immunopharmacol. 2019;67:248–59.

    Article  CAS  PubMed  Google Scholar 

  52. Tabatabaei-Panah PS, Moravvej H, Delpasand S, Jafari M, Sepehri S, Abgoon R, et al. IL12B and IL23R polymorphisms are associated with alopecia areata. Genes Immun. 2020;21:203–10.

    Article  CAS  PubMed  Google Scholar 

  53. Haouami Y, Dhaouadi T, Sfar I, Bacha M, Gargah T, Bardi R, et al. The role of IL-23/IL-17 axis in human kidney allograft rejection. J Leukoc Biol. 2018;104:1229–39.

    Article  CAS  PubMed  Google Scholar 

  54. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78.

    Article  Google Scholar 

  55. Boyd JK, Barratt J. Inherited IgA glycosylation pattern in IgA nephropathy and HSP nephritis: where do we go next? Kidney Int. 2011;80:8–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ruyu Ren and Mengyuan Lyu for assistance in statistical analysis.

Funding

This work was sponsored by the National Natural Science Foundation of China [81902129] and Science and Technology Agency of Sichuan Province [2019YFS0313 and 2019YFS0321].

Author information

Authors and Affiliations

Authors

Contributions

HL, ZH, JZ, and BY designed the study; ZH and JZ were responsible for recruitment of subjects; HL, ZH, and JZ performed experiments and conducted data management; HL and BY performed statistical analyses and interpreted results; HL wrote the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Bin Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Huang, Z., Zhang, J. et al. Association of genetic polymorphisms in IL-23R and IL-17A with the susceptibility to IgA nephropathy in a Chinese Han population. Genes Immun 23, 33–41 (2022). https://doi.org/10.1038/s41435-021-00160-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-021-00160-6

Search

Quick links