Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of RPGR ORF15 mutation for X-linked retinitis pigmentosa in a large Chinese family and in vitro correction with prime editor

Abstract

X-linked retinitis pigmentosa (XLRP) is the most severe form of Retinitis Pigmentosa (RP) and one of the leading causes of blindness in the world. Currently, there is no effective treatment for RP. In the present study, we recruited a XLRP family and identified a 4 bp deletion mutation (c. 2234_2237del) in RPGR ORF15 with Sanger sequencing, which was located in the exact same region as the missing XES (X chromosome exome sequencing) coverage. Then, we generated cell lines harboring the identified mutation and corrected it via enhanced prime editing system (ePE). Collectively, Sanger sequencing identified a pathogenic mutation in RPGR ORF15 for XLRP which was corrected with ePE. This study provides a valuable insight for genetic counseling of the afflicted family members and prenatal diagnosis, also paves a way for applying prime editing based gene therapy in those patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical data for X-linked retinitis pigmentosa patient.
Fig. 2: Schematic of gene correction in HEK293-mRO cell line.
Fig. 3: PE2 and ePE-mediated gene correction in HEK293-mRO cells.

Similar content being viewed by others

Data availability

The corresponding author declares that the data are available if requested. The deep sequencing data are available at the NCBI Sequence Read Archive (SRA) under BioProject PRJNA#573504 and PRJNA783078 (SRA accession number SRR17023438 and SRP17023439, sample accession numbers, SAMN23416124).

References

  1. Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–86.

    Article  PubMed  Google Scholar 

  2. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809.

    Article  CAS  PubMed  Google Scholar 

  3. Dias MF, Joo K, Kemp JA, Fialho SL, Cunha AdS,Jr., Woo SJ. et al. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res. 2018;63:107–31.

    Article  CAS  PubMed  Google Scholar 

  4. Anasagasti A, Irigoyen C, Barandika O, Lopez de Munain A, Ruiz-Ederra J. Current mutation discovery approaches in retinitis pigmentosa. Vision Res. 2012;75:117–29.

    Article  CAS  PubMed  Google Scholar 

  5. Nash BM, Wright DC, Grigg JR, Bennetts B, Jamieson RV. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy. Transl Pediatr. 2015;4:139–63.

    PubMed  PubMed Central  Google Scholar 

  6. Bassuk AG, Sujirakul T, Tsang SH, Mahajan VB. A novel RPGR mutation masquerading as Stargardt disease. Brit J Ophthalmol. 2014;98:709–11.

    Article  Google Scholar 

  7. Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res. 2010;29:335–75.

    Article  CAS  PubMed  Google Scholar 

  8. Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet. 2013;84:132–41.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao L, Wang F, Wang H, Li Y, Alexander S, Wang K, et al. Next-generation sequencing-based molecular diagnosis of 82 retinitis pigmentosa probands from Northern Ireland. Hum Genet. 2015;134:217–30.

    Article  CAS  PubMed  Google Scholar 

  10. Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics. 2011;12:238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.

    Article  CAS  PubMed  Google Scholar 

  12. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155:27–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giacalone JC, Andorf JL, Zhang Q, Burnight ER, Ochoa D, Reutzel AJ, et al. Development of a molecularly stable gene therapy vector for the treatment of RPGR-associated X-linked retinitis pigmentosa. Hum Gene Ther. 2019;30:967–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diakatou M, Manes G, Bocquet B, Meunier I, Kalatzis V Genome editing as a treatment for the most prevalent causative genes of autosomal dominant retinitis pigmentosa. Int J Mol Sci. 2019;20.

  15. Collin C, Liu Q CRISPR/Cas9-based genome editing approaches for RP1 associated autosomal dominant Retinitis Pigmentosa. Invest Ophthalmol Vis Sci. 2021;62.

  16. Quinn J, Musa A, Kantor A, McClements ME, Cehajic-Kapetanovic J, MacLaren RE, et al. Genome-editing strategies for treating human retinal degenerations. Hum Gene Ther. 2021;32:247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu WH, Tsai YT, Justus S, Lee TT, Zhang L, Lin CS, et al. CRISPR repair reveals causative mutation in a preclinical model of retinitis pigmentosa. Mol Ther. 2016;24:1388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther. 2016;24:556–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu S, Du J, Chen NN, Jia RX, Zhang JL, Liu XZ, et al. In vivo CRISPR/Cas9-mediated genome editing mitigates photoreceptor degeneration in a mouse model of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2020;61:10.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB. Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep. 2016;6:1–6.

    Article  Google Scholar 

  21. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24:939–46.

    Article  CAS  PubMed  Google Scholar 

  22. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44.

    Article  CAS  PubMed  Google Scholar 

  23. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Yang G, Huang S, Li X, Wang X, Li G, et al. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res. 2021;31:1134–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu J, Shen E, Shi D, Sun Z, Cai T. Identification of a novel Cys146X mutation of SOD1 in familial amyotrophic lateral sclerosis by whole-exome sequencing. Genet Med. 2012;14:823–6.

    Article  CAS  PubMed  Google Scholar 

  26. Wang T, Liu Q, Li X, Wang X, Li J, Zhu X, et al. RRBS-analyser: a comprehensive web server for reduced representation bisulfite sequencing data analysis. Hum Mutat. 2013;34:1606–10.

    Article  PubMed  Google Scholar 

  27. Han R, Wang X, Wang D, Wang L, Yuan Z, Ying M, et al. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus. Sci Rep. 2015;5:12031.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lv X, Qiu K, Tu T, He X, Peng Y, Ye J, et al. Development of a simple and quick method to assess base editing in human cells. Mol Ther-Nucl Acids. 2020;20:580–8.

    Article  CAS  Google Scholar 

  29. Wang Y, Wang B, Xie H, Ren Q, Liu X, Li F, et al. Efficient human genome editing using SaCas9 ribonucleoprotein complexes. Biotechnol J. 2019;14:e1800689.

  30. Zhang X, Ge X, Yu Y, Zhang Y, Wu Y, Luan Y, et al. Identification of three novel mutations in the FRMD7 gene for X-linked idiopathic congenital nystagmus. Sci Rep. 2014;4:3745.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG, et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet. 2000;25:462–6.

    Article  CAS  PubMed  Google Scholar 

  32. Breuer DK, Yashar BM, Filippova E, Hiriyanna S, Lyons RH, Mears AJ, et al. A comprehensive mutation analysis of RP2 and RPGR in a north American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet. 2002;70:1545–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim C, Kim KJ, Bok J, Lee E-J, Kim D-J, Oh JH, et al. Microarray-based mutation detection and phenotypic characterization in Korean patients with retinitis pigmentosa. Mol Vis. 2012;18:2398–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Blanco-Kelly F, García-Hoyos M, Cortón M, Avila-Fernández A, Riveiro-Álvarez R, Giménez A, et al. Genotyping microarray: mutation screening in Spanish families with autosomal dominant retinitis pigmentosa. Mol Vis. 2012;18:1478–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhong YM, Xu F, Wu JH, Schubert J, Li MM. Application of next generation sequencing in laboratory medicine. Ann Lab Med. 2021;41:25–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Guidelines for validation of next-generation sequencing-based oncology panels a joint consensus recommendation of the association for molecular pathology and college of american pathologists. J Mol Diagn. 2017;19:341–65.

    Article  PubMed  Google Scholar 

  37. Cromer MK, Camarena J, Martin RM, Lesch BJ, Vakulskas CA, Bode NM, et al. Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells. Nat Med. 2021;27:677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guha TK, Wai A, Hausner G. Programmable genome editing tools and their regulation for efficient genome engineering. Comput Struct Biotec. 2017;15:146–60.

    Article  CAS  Google Scholar 

  39. Jiang T, Zhang X-O, Weng Z, Xue W. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol. 2022;40:227–34.

    Article  CAS  PubMed  Google Scholar 

  40. Choi J, Chen W, Suiter CC, Lee C, Chardon FM, Yang W, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2022;40:218–26.

    Article  CAS  PubMed  Google Scholar 

  41. Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen P-F, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021;184:5635–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhuang Y, Liu J, Wu H, Zhu Q, Yan Y, Meng H, et al. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat Chem Biol. 2022;18:29–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the families for their participation in this project. We are indebted to Dr. Jinyu Wu (Institute of Genomic Medicine, Wenzhou Medical University) for bioinformatics analysis and Prof.Peter Reinach for comments on the manuscript. This work was supported by grants from National Natural Science Foundation of China (81201181), Science Technology project of Zhejiang Province (2017C37176), and Project of State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University (J02–20190201) and Wenzhou City Grant (H20210011).

Author information

Authors and Affiliations

Authors

Contributions

XL and FG conceived and designed the study experiments. ZZ and XZ identified the mutation. XL, ZZ, DX, and FG wrote and edited manuscript. XL, YZ, JL, YZ, BW, SL, WS performed the experiments. ZS, JX, JQ, and FG contributed to data analysis, data interpretation. XL, DX, and FG revised the manuscript. All authors have read and approved the final manuscript, and therefore, have full access to all data in this study and take responsibility for the integrity and security of the data.

Corresponding authors

Correspondence to Dan Xu or Feng Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study. Additional informed consent was obtained from all patients for which identifying information is included in this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Zheng, Z., Zhi, X. et al. Identification of RPGR ORF15 mutation for X-linked retinitis pigmentosa in a large Chinese family and in vitro correction with prime editor. Gene Ther 30, 160–166 (2023). https://doi.org/10.1038/s41434-022-00352-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-022-00352-3

This article is cited by

Search

Quick links