Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inferring novel genes related to colorectal cancer via random walk with restart algorithm

Subjects

Abstract

Colorectal cancer (CRC) is the third most common type of cancer. In recent decades, genomic analysis has played an increasingly important role in understanding the molecular mechanisms of CRC. However, its pathogenesis has not been fully uncovered. Identification of genes related to CRC as complete as possible is an important way to investigate its pathogenesis. Therefore, we proposed a new computational method for the identification of novel CRC-associated genes. The proposed method is based on existing proven CRC-associated genes, human protein–protein interaction networks, and random walk with restart algorithm. The utility of the method is indicated by comparing it to the methods based on Guilt-by-association or shortest path algorithm. Using the proposed method, we successfully identified 298 novel CRC-associated genes. Previous studies have validated the involvement of the majority of these 298 novel genes in CRC-associated biological processes, thus suggesting the efficacy and accuracy of our method.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bosman F, Yan P. Molecular pathology of colorectal cancer. Pol J Pathol. 2014;65:257–66.

    PubMed  Google Scholar 

  2. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66:271–89.

    PubMed  Google Scholar 

  3. El-Shami K, Oeffinger KC, Erb NL, Willis A, Bretsch JK, Pratt-Chapman ML, et al. American cancer society colorectal cancer survivorship Care Guidelines. CA Cancer J Clin. 2015;65:428–55.

    PubMed  PubMed Central  Google Scholar 

  4. Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res. 2017;61:1500902.

    Google Scholar 

  5. Akin H, Tozun NDiet. microbiota, and colorectal cancer. J Clin Gastroenterol. 2014;48(Suppl 1):S67–9.

    CAS  PubMed  Google Scholar 

  6. Coppede F, Lopomo A, Spisni R, Migliore L. Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol. 2014;20:943–56.

    PubMed  PubMed Central  Google Scholar 

  7. Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer. Am J Gastroenterol. 2014;109:1159–79.

    PubMed  Google Scholar 

  8. Stoffel EM, Yurgelun MB. Genetic predisposition to colorectal cancer: implications for treatment and prevention. Semin Oncol. 2016;43:536–42.

    PubMed  Google Scholar 

  9. Hulur I, Gamazon ER, Skol AD, Xicola RM, Llor X, Onel K, et al. Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci. BMC Genomics. 2015;16:138.

    PubMed  PubMed Central  Google Scholar 

  10. Yashiro M. Molecular alterations of colorectal cancer with inflammatory Bowel Disease. Dig Dis Sci. 2015;60:2251–63.

    CAS  PubMed  Google Scholar 

  11. Zhao Y, Ando K, Oki E, Ikawa-Yoshida A, Ida S, Kimura Y, et al. Aberrations of BUBR1 and TP53 gene mutually associated with chromosomal instability in human colorectal cancer. Anticancer Res. 2014;34:5421–7.

    PubMed  Google Scholar 

  12. Roger L, Jones RE, Heppel NH, Williams GT, Sampson JR, Baird DM. Extensive telomere erosion in the initiation of colorectal adenomas and its association with chromosomal instability. J Natl Cancer Inst. 2013;105:1202–11.

    CAS  PubMed  Google Scholar 

  13. Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev. 2004;23:11–27.

    CAS  PubMed  Google Scholar 

  14. Grady WM, Markowitz SD. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig Dis Sci. 2015;60:762–72.

    CAS  PubMed  Google Scholar 

  15. Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options Oncol. 2015;16:30.

    PubMed  PubMed Central  Google Scholar 

  16. Mulcahy MF, Benson AB 3rd. The role of carcinoembryonic antigen monitoring in management of colorectal cancer. Curr Oncol Rep. 1999;1:168–72.

    CAS  PubMed  Google Scholar 

  17. Chen Z, Liu S, Tian L, Wu M, Ai F, Tang W, et al. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget. 2015;6:38139–50.

    PubMed  PubMed Central  Google Scholar 

  18. Kim MS, Chung NG, Kang MR, Yoo NJ, Lee SH. Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology. 2011;58:660–8.

    PubMed  Google Scholar 

  19. Hughes LA, Melotte V, de Schrijver J, de Maat M, Smit VT, Bovee JV, et al. The CpG island methylator phenotype: what’s in a name? Cancer research. 2013;73:5858–68.

    CAS  PubMed  Google Scholar 

  20. Tariq K, Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med. 2016;13:120–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Haraldsdottir S, Hampel H, Tomsic J, Frankel WL, Pearlman R, de la Chapelle A, et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology. 2014;147:1308–16.

    PubMed  Google Scholar 

  22. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513:382–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang J, Chen L, Kong X, Huang T, Cai YD. Analysis of tumor suppressor genes based on gene ontology and the KEGG pathway. PLoS ONE. 2014;9:e107202.

    PubMed  PubMed Central  Google Scholar 

  24. Li BQ, You J, Chen L, Zhang J, Zhang N, Li HP, et al. Identification of lung-cancer-related genes with the shortest path approach in a protein-protein interaction network. Biomed Res Int. 2013;2013:267375.

    PubMed  PubMed Central  Google Scholar 

  25. Kraus S, Nabiochtchikov I, Shapira S, Arber N. Recent advances in personalized colorectal cancer research. Cancer Lett. 2014;347:15–21.

    CAS  PubMed  Google Scholar 

  26. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J. et al. STRINGv10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.

    CAS  PubMed  Google Scholar 

  27. Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet. 2008;82:949–58.

    PubMed  PubMed Central  Google Scholar 

  28. Jiang R, Gan MX, He P. Constructing a gene semantic similarity network for the inference of disease genes. BMC Syst Biol. 2011;5(Suppl 2):S2.

    PubMed  PubMed Central  Google Scholar 

  29. Lu S, Yan Y, Li Z, Chen L, Yang J, Zhang Y, et al. Determination of genes related to uveitis by utilization of the random walk with restart algorithm on a protein–protein interaction network. Int J Mol Sci. 2017;18:1045.

    PubMed Central  Google Scholar 

  30. Chen L, Yang J, Xing Z, Yuan F, Shu Y, Zhang Y, et al. An integrated method for the identification of novel genes related to oral cancer. PLoS ONE. 2017;12:e0175185.

    PubMed  PubMed Central  Google Scholar 

  31. Li J, Chen L, Wang S, Zhang Y, Kong X, Huang T, et al. A computational method using the random walk with restart algorithm for identifying novel epigenetic factors. Mol Genet Genomics. 2018;293:293–301.

    CAS  PubMed  Google Scholar 

  32. Yuan F, Lu W. Prediction of potential drivers connecting different dysfunctional levels in lung adenocarcinoma via a protein–protein interaction network. Biochi Biophys Acta. 2017;1864(6, Part B):2284–93.

    Google Scholar 

  33. Zhang Y, Dai L, Liu Y, Zhang Y, Wang S. Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm. PLoS ONE. 2017;12:e0177017.

    PubMed  PubMed Central  Google Scholar 

  34. Li L, Wang Y, An L, Kong X, Huang T. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Meniere’s disease. PLoS ONE. 2017;12:e0182592.

    PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Suo Y, Liu M, Xu X. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein–protein interaction network. Biochim Biophys Acta. 2017;1864:2369–75.

    Google Scholar 

  36. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Google Scholar 

  37. Zhao M, Kim P, Mitra R, Zhao J, Zhao Z. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2016;44(D1):D1023–31.

    CAS  PubMed  Google Scholar 

  38. The UniProt C. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69.

    Google Scholar 

  39. Depre C, Rider MH, Hue L. Mechanisms of control of heart glycolysis. Eur J Biochem. 1998;258:277–90.

    CAS  PubMed  Google Scholar 

  40. Hue L, Rider MH. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J. 1987;245:313–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hansford RG, Zorov D. Role of mitochondrial calcium transport in the control of substrate oxidation. Mol Cell Biochem. 1998;184:359–69.

    CAS  PubMed  Google Scholar 

  42. Chen L, Zhang YH, Huang T, Cai YD. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities. Mol Genet Genomics. 2016;291:913–34.

    CAS  PubMed  Google Scholar 

  43. Hu L, Huang T, Shi X, Lu WC, Cai YD, Chou KC. Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties. PLoS ONE. 2011;6:e14556.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao YF, Chen L, Cai YD, Feng KY, Huang T, Jiang Y. Predicting metabolic pathways of small molecules and enzymes based on interaction information of chemicals and proteins. PLoS ONE. 2012;7:e45944.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang G, Chu C, Huang T, Kong X, Zhang Y, Zhang N, et al. Exploring mouse protein function via multiple approaches. PLoS ONE. 2016;11:e0166580.

    PubMed  PubMed Central  Google Scholar 

  46. Gui T, Dong X, Li R, Li Y, Wang Z. Identification of hepatocellular carcinoma-related genes with a machine learning and network analysis. J Comput Biol. 2015;22:63–71.

    CAS  PubMed  Google Scholar 

  47. Zhang J, Yang J, Huang T, Shu Y, Chen L. Identification of novel proliferative diabetic retinopathy related genes on protein–protein interaction network. Neurocomputing. 2016;217:63–72.

    Google Scholar 

  48. Chen L, Huang T, Zhang YH, Jiang Y, Zheng M, Cai YD. Identification of novel candidate drivers connecting different dysfunctional levels for lung adenocarcinoma using protein-protein interactions and a shortest path approach. Sci Rep. 2016;6:29849.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen L, Yang J, Huang T, Kong X, Lu L, Cai YD. Mining for novel tumor suppressor genes using a shortest path approach. J Biomol Struct Dyn. 2016;34:664–75.

    CAS  PubMed  Google Scholar 

  50. Chen L, Hao Xing Z, Huang T, Shu Y, Huang G, Li H-P. Application of the shortest path algorithm for the discovery of breast cancer-related genes. Curr Bioinformatics. 2016;11:51–8.

    CAS  Google Scholar 

  51. Zhu LC, Chen XJ, Kong XY, Cai YD. Investigation of the roles of trace elements during hepatitis C virus infection using protein-protein interactions and a shortest path algorithm. Biochim Biophys Acta. 2016;1860:2756–68.

    CAS  PubMed  Google Scholar 

  52. Cai Y-D, Zhang Q, Zhang Y-H, Chen L, Huang T. Identification of genes associated with breast cancer metastasis to bone on a protein-protein interaction network with a shortest path algorithm. J Proteome Res. 2017;16:1027–38.

    CAS  PubMed  Google Scholar 

  53. Chen L, Wang B, Wang S, Yang J, Hu J, Xie Z, et al. OPMSP: A computational method integrating protein interaction and sequence information for the identification of novel putative oncogenes. Protein Pept Lett. 2016;23:1081–94.

    CAS  PubMed  Google Scholar 

  54. Chen L, Liu T, Zhao X. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms. Biochim Biophys Acta Mol Basis Dis. 2018;1864(6, Part B):2228–40.

    CAS  PubMed  Google Scholar 

  55. Li Y, Patra JC. Genome-wide inferring genephenotype relationship by walking on the heterogeneous network. Bioinformatics. 2010;26:1219–24.

    CAS  PubMed  Google Scholar 

  56. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56.

    Google Scholar 

  57. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang J, Xing Z, Ma M, Wang N, Cai YD, Chen L, et al. Gene ontology and KEGG enrichment analyses of genes related to age-related macular degeneration. Biomed Res Int. 2014;2014:450386.

    PubMed  PubMed Central  Google Scholar 

  59. Chen L, Zhang Y-H, Zheng M, Huang T, Cai Y-D. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds. Mol Genet Genomics. 2016;291:2065–79.

    CAS  PubMed  Google Scholar 

  60. Chen L, Zhang Y-H, Lu G, Huang T, Cai Y-D. Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways. Artif Intell Med. 2017;76:27–36.

    PubMed  Google Scholar 

  61. Chen L, Zhang Y-H, Wang S, Zhang Y, Huang T, Cai Y-D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS ONE. 2017;12:e0184129.

    PubMed  PubMed Central  Google Scholar 

  62. Chen L, Chu C, Zhang Y-H, Zheng M-Y, Zhu L, Kong X, et al. Identification of drug-drug interactions using chemical interactions. Current Bioinformatics. 2017;12:526–34.

    CAS  Google Scholar 

  63. Chen L, Zeng WM, Cai YD, Feng KY, Chou KC. Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities. PLoS ONE. 2012;7:e35254.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao X, Chen L, Lu J. A similarity-based method for prediction of drug side effects with heterogeneous information. Math Biosci. 2018;306:136–44.

    CAS  PubMed  Google Scholar 

  65. Zhao X, Chen L, Guo Z-H, Liu T. Predicting drug side effects with compact integration of heterogeneous networks. Cur Bioinform. 2019. https://doi.org/10.2174/1574893614666190220114644.

  66. Oliver S. Guilt-by-association goes global. Nature. 2000;403:601–3.

    CAS  PubMed  Google Scholar 

  67. Gillis J, Pavlidis P. “Guilt by Association” is the exception rather than the rule in gene networks. PLoS Computat Biol. 2012;8:e1002444.

    CAS  Google Scholar 

  68. Chen J, Li C, Zhu Y, Sun L, Sun H, Liu Y, et al. Integrating GO and KEGG terms to characterize and predict acute myeloid leukemia-related genes. Hematology. 2015;20:336–42.

    CAS  PubMed  Google Scholar 

  69. Li Z, Li BQ, Jiang M, Chen L, Zhang J, Liu L, et al. Prediction and analysis of retinoblastoma related genes through gene ontology and KEGG. Biomed Res Int. 2013;2013:304029.

    PubMed  PubMed Central  Google Scholar 

  70. Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A. GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol. 2007;8:R3.

    PubMed  PubMed Central  Google Scholar 

  71. Chisanga D, Keerthikumar S, Pathan M, Ariyaratne D, Kalra H, Boukouris S, et al. Colorectal cancer atlas: An integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues. Nucleic acids Res. 2016;44(D1):D969–74.

    CAS  PubMed  Google Scholar 

  72. Nishio M, Hamada K, Kawahara K, Sasaki M, Noguchi F, Chiba S, et al. Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. J Clin Invest. 2012;122:4505–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Heidary Arash E, Song KM, Song S, Shiban A, Attisano L. Arhgef7 promotes activation of the Hippo pathway core kinase Lats. EMBO J. 2014;33:2997–3011.

    PubMed  PubMed Central  Google Scholar 

  74. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    CAS  PubMed  Google Scholar 

  75. Hong AW, Meng Z, Guan KL. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol. 2016;13:324–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tey S, Ahmad-Annuar A, Drew AP, Shahrizaila N, Nicholson GA, Kennerson ML. Mutation analysis of genes within the dynactin complex in a cohort of hereditary peripheral neuropathies. Clin Genet. 2016;90:127–33.

    CAS  PubMed  Google Scholar 

  77. Bransfield KL, Askham JM, Leek JP, Robinson PA, Mighell AJ. Phenotypic changes associated with DYNACTIN-2 (DCTN2) over expression characterise SJSA-1 osteosarcoma cells. Mol Carcinog. 2006;45:157–63.

    CAS  PubMed  Google Scholar 

  78. Berrueta L, Tirnauer JS, Schuyler SC, Pellman D, Bierer BE. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr Biol. 1999;9:425–8.

    CAS  PubMed  Google Scholar 

  79. Li W, Mukouyama YS. Tissue-specific venous expression of the EPH family receptor EphB1 in the skin vasculature. Dev Dyn. 2013;242:976–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cibert-Goton V, Yuan G, Battaglia A, Fredriksson S, Henkemeyer M, Sears T, et al. Involvement of EphB1 receptors signalling in models of inflammatory and neuropathic pain. PLoS ONE. 2013;8:e53673.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sheng Z, Wang J, Dong Y, Ma H, Zhou H, Sugimura H, et al. EphB1 is underexpressed in poorly differentiated colorectal cancers. Pathobiology. 2008;75:274–80.

    CAS  PubMed  Google Scholar 

  82. Abuli A, Fernandez-Rozadilla C, Giraldez MD, Munoz J, Gonzalo V, Bessa X, et al. A two-phase case-control study for colorectal cancer genetic susceptibility: candidate genes from chromosomal regions 9q22 and 3q22. Br J Cancer. 2011;105:870–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Konstantinidis DG, Pushkaran S, Johnson JF, Cancelas JA, Manganaris S, Harris CE, et al. Signaling and cytoskeletal requirements in erythroblast enucleation. Blood. 2012;119:6118–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Joyce PL, Cox ADRac1. and Rac3 are targets for geranylgeranyltransferase I inhibitor-mediated inhibition of signaling, transformation, and membrane ruffling. Cancer Res. 2003;63:7959–67.

    CAS  PubMed  Google Scholar 

  85. Rosenberg BJ, Gil-Henn H, Mader CC, Halo T, Yin T, Condeelis J, et al. Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells. Mol Biol Cell. 2017;28:1347–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Morris CM, Haataja L, McDonald M, Gough S, Markie D, Groffen J, et al. The small GTPase RAC3 gene is located within chromosome band 17q25.3 outside and telomeric of a region commonly deleted in breast and ovarian tumours. Cytogenet Cell Genet. 2000;89:18–23.

    CAS  PubMed  Google Scholar 

  87. Liu TQ, Wang GB, Li ZJ, Tong XD, Liu HX. Silencing of Rac3 inhibits proliferation and induces apoptosis of human lung cancer cells. Asian Pac J Cancer Prev. 2015;16:3061–5.

    PubMed  Google Scholar 

  88. Zhou H, Zhang Y, Chen Q, Lin Y. AKT and JNK signaling pathways increase the metastatic potential of colorectal cancer cells by altering transgelin expression. Dig Dis Sci. 2016;61:1091–7.

    CAS  PubMed  Google Scholar 

  89. Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.

    CAS  PubMed  Google Scholar 

  90. Littink KW, van Genderen MM, Collin RW, Roosing S, de Brouwer AP, Riemslag FC, et al. A novel homozygous nonsense mutation in CABP4 causes congenital cone-rod synaptic disorder. Invest Ophthalmol Vis Sci. 2009;50:2344–50.

    PubMed  Google Scholar 

  91. Bikle D, Munson S, Christakos S, Kumar R, Buckendahl P. Calmodulin binding to the intestinal brush-border membrane: comparison to other calcium-binding proteins. Biochim Biophys Acta. 1989;1010:122–7.

    CAS  PubMed  Google Scholar 

  92. Gylfe AE, Kondelin J, Turunen M, Ristolainen H, Katainen R, Pitkanen E, et al. Identification of candidate oncogenes in human colorectal cancers with microsatellite instability. Gastroenterology. 2013;145:540–3.

    CAS  PubMed  Google Scholar 

  93. Fouquet J, Kann M, Soues S, Melki R. ARP1 in Golgi organisation and attachment of manchette microtubules to the nucleus during mammalian spermatogenesis. J Cell Sci. 2000;113(Pt 5):877–86.

    CAS  PubMed  Google Scholar 

  94. Kiyamova R, Garifulin O, Gryshkova V, Kostianets O, Shyian M, Gout I, et al. Preliminary study of thyroid and colon cancers-associated antigens and their cognate autoantibodies as potential cancer biomarkers. Biomarkers. 2012;17:362–71.

    CAS  PubMed  Google Scholar 

  95. Hinds DA, McMahon G, Kiefer AK, Do CB, Eriksson N, Evans DM, et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet. 2013;45:907–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Li TT, Ogino S, Qian ZR. Toll-like receptor signaling in colorectal cancer: carcinogenesis to cancer therapy. World J Gastroenterol. 2014;20:17699–708.

    PubMed  PubMed Central  Google Scholar 

  97. Bennike T, Birkelund S, Stensballe A, Andersen V. Biomarkers in inflammatory bowel diseases: current status and proteomics identification strategies. World J Gastroenterol. 2014;20:3231–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu J, Zhang G, Lv Y, Zhang X, Ying C, Yang S, et al. SGK2 promotes hepatocellular carcinoma progression and mediates GSK-3beta/beta-catenin signaling in HCC cells. Tumour Biol. 2017;39:1010428317700408.

    PubMed  Google Scholar 

  99. Lang F, Henke G, Embark HM, Waldegger S, Palmada M, Bohmer C, et al. Regulation of channels by the serum and glucocorticoid-inducible kinase - implications for transport, excitability and cell proliferation. Cell Physiol Biochem. 2003;13:41–50.

    CAS  PubMed  Google Scholar 

  100. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65:7591–5.

    CAS  PubMed  Google Scholar 

  101. Sherk AB, Frigo DE, Schnackenberg CG, Bray JD, Laping NJ, Trizna W, et al. Development of a small-molecule serum- and glucocorticoid-regulated kinase-1 antagonist and its evaluation as a prostate cancer therapeutic. Cancer Res. 2008;68:7475–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bruhn MA, Pearson RB, Hannan RD, Sheppard KE. Second AKT: the rise of SGK in cancer signalling. Growth Factors. 2010;28:394–408.

    CAS  PubMed  Google Scholar 

  103. Di J, Huang H, Wang Y, Qu D, Tang J, Cheng Q, et al. p53 target gene Rap2B regulates the cytoskeleton and inhibits cell spreading. J Cancer Res Clin Oncol. 2015;141:1791–8.

    CAS  PubMed  Google Scholar 

  104. Kim H, Yang JM, Jin Y, Jheon S, Kim K, Lee CT, et al. MicroRNA expression profiles and clinicopathological implications in lung adenocarcinoma according to EGFR, KRAS, and ALK status. Oncotarget. 2017;8:8484–98.

    PubMed  Google Scholar 

  105. Alliey-Rodriguez N, Zhang D, Badner JA, Lahey BB, Zhang X, Dinwiddie S, et al. Genome-wide association study of personality traits in bipolar patients. Psychiatr Genet. 2011;21:190–4.

    PubMed  PubMed Central  Google Scholar 

  106. Xie X, Liu H, Wang M, Ding F, Xiao H, Hu F, et al. miR-342-3p targets RAP2B to suppress proliferation and invasion of non-small cell lung cancer cells. Tumour Biol. 2015;36:5031–8.

    CAS  PubMed  Google Scholar 

  107. Zhang M, Zhuang Q, Cui L. MiR-194 inhibits cell proliferation and invasion via repression of RAP2B in bladder cancer. Biomed Pharmacother. 2016;80:268–75.

    CAS  PubMed  Google Scholar 

  108. Gautam M, DeChiara TM, Glass DJ, Yancopoulos GD, Sanes JR. Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn. Brain research. Dev Brain Res. 1999;114:171–8.

    CAS  Google Scholar 

  109. Oh SJ, Hatanaka Y, Hemmi S, Young AM, Scheufele ML, Nations SP, et al. Repetitive nerve stimulation of facial muscles in MuSK antibody-positive myasthenia gravis. Muscle Nerve. 2006;33:500–4.

    PubMed  Google Scholar 

  110. Engelman JA, Zhang X, Galbiati F, Volonte D, Sotgia F, Pestell RG, et al. Molecular genetics of the caveolin gene family: implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy. Am J Hum Genet. 1998;63:1578–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li BQ, Huang T, Liu L, Cai YD, Chou KC. Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. PLoS ONE. 2012;7:e33393.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Przulj N, Wigle DA, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics. 2004;20:340–8.

    CAS  PubMed  Google Scholar 

  113. Sonachalam M, Shen J, Huang H, Wu X. Systems biology approach to identify gene network signatures for colorectal cancer. Front Genet. 2012;3:80.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Qian K, Huang H, Jiang J, Xu D, Guo S, Cui Y, et al. Identifying autophagy gene-associated module biomarkers through construction and analysis of an autophagy-mediated ceRNAceRNA interaction network in colorectal cancer. Int J Oncol. 2018;53:1083–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Shi M, Beauchamp RD, Zhang B. A network-based gene expression signature informs prognosis and treatment for colorectal cancer patients. PLoS ONE. 2012;7:e41292.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lu CC, Kuo HC, Wang FS, Jou MH, Lee KC, Chuang JH. Upregulation of TLRs and IL-6 as a marker in human colorectal cancer. Int J Mol Sci. 2014;16:159–77.

    PubMed  PubMed Central  Google Scholar 

  117. Zhang B, Shang P, Qiangba Y, Xu A, Wang Z, Zhang H. The association of NR1H3 gene with lipid deposition in the pig. Lipids Health Dis. 2016;15:99.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Yu-Hang Zhang from Shanghai Institutes for Biological Sciences for his useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Cong Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Zhu, ZG. & Lu, WC. Inferring novel genes related to colorectal cancer via random walk with restart algorithm. Gene Ther 26, 373–385 (2019). https://doi.org/10.1038/s41434-019-0090-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0090-7

This article is cited by

Search

Quick links