Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Juvenile-onset myopia—who to treat and how to evaluate success

Abstract

The risk of eye diseases such as myopic macular degeneration increases with the level of myopia, but there is no safe level of myopia and the burden of lower degrees of myopia remains considerable. Effective treatments are available that slow progression and thus limit the final degree of myopia. In this review, the rationale for slowing progression is summarized, and a case made for treating all myopic children. Measurement of refractive error and axial length is reviewed, stressing the precision of optical biometry, but also the need for cycloplegic autorefraction. The factors influencing progression are considered and the available tools for interpretation of progression rate are discussed. Finally, the need to set attainable treatment goals is emphasized.

摘要

近视性黄斑变性等眼病的发病风险随近视程度的增加而增加, 但目前尚无近视度数的安全水平, 低度近视所造成的的负担仍然沉重。有效治疗可以减缓近视进展, 可阻挡近视的进一步进展。本综述总结了减缓近视进展的基本原理, 并提出治疗所有近视儿童的案例。本文也回顾了屈光不正和眼轴长度测量方法, 强调了光学生物测量的精确性, 也强调了睫状肌麻痹的必要性。本文考虑了影响近视进展的因素, 并讨论了解释其进展率的可用工具。最后, 文章强调了设定可实现治疗近视目标的必要性。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mean annual axial elongation (for the subsequent year) as a function of age and race.

Similar content being viewed by others

Notes

  1. https://bhvi.org/myopia-calculator-resources/

References

  1. Haarman AEG, Enthoven CA, Tideman JWL, Tedja MS, Verhoeven VJM, Klaver CCW. The complications of myopia: a review and meta-analysis. Invest Ophthalmol Vis Sci. 2020;61:49.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bullimore MA, Ritchey ER, Shah S, Leveziel N, Bourne RRA, Flitcroft DI. The risks and benefits of myopia control. Ophthalmology. 2021;128:1561–79.

    Article  PubMed  Google Scholar 

  3. Ohno-Matsui K, Wu PC, Yamashiro K, Vutipongsatorn K, Fang Y, Cheung CMG, et al. IMI pathologic myopia. Invest Ophthalmol Vis Sci. 2021;62:5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fricke TR, Jong M, Naidoo KS, Sankaridurg P, Naduvilath TJ, Ho SM, et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling. Br J Ophthalmol. 2018;102:855–62.

    Article  PubMed  Google Scholar 

  5. Perkins ES. Morbidity from myopia. Sight Sav Rev. 1979;49:11–9.

    CAS  PubMed  Google Scholar 

  6. Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31:622–60.

    Article  CAS  PubMed  Google Scholar 

  7. Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002;109:704–11.

    Article  PubMed  Google Scholar 

  8. Liu HH, Xu L, Wang YX, Wang S, You QS, Jonas JB. Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing Eye Study. Ophthalmology. 2010;117:1763–8.

    Article  PubMed  Google Scholar 

  9. Asakuma T, Yasuda M, Ninomiya T, Noda Y, Arakawa S, Hashimoto S, et al. Prevalence and risk factors for myopic retinopathy in a Japanese population: the Hisayama Study. Ophthalmology. 2012;119:1760–5.

    Article  PubMed  Google Scholar 

  10. Wong YL, Sabanayagam C, Ding Y, Wong CW, Yeo AC, Cheung YB, et al. Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore. Invest Ophthalmol Vis Sci. 2018;59:4603–13.

    Article  PubMed  Google Scholar 

  11. Modjtahedi BS, Abbott RL, Fong DS, Lum F, Tan D, Task Force on Myopia. Reducing the global burden of myopia by delaying the onset of myopia and reducing myopic progression in children: the Academy’s Task Force on myopia. Ophthalmology. 2021;128:816–26.

    Article  PubMed  Google Scholar 

  12. Bullimore MA, Logan NS. Optical Interventions for myopia control. Eye. https://doi.org/10.1038/s41433-023-02723-5. In this issue.

  13. Jawaid I, Saunders K, Hammond C, Dahlmann-Noor A, Bullimore M. Low concentration atropine and myopia: a narrative review of the evidence for United Kingdom based practitioners. Eye. https://doi.org/10.1038/s41433-023-02718-2. In this issue.

  14. Sankaridurg P, Berntsen DA, Bullimore MA, Cho P, Flitcroft I, Gawne TJ, et al. IMI 2023 digest. Invest Ophthalmol Vis Sci. 2023;64:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bullimore MA, Brennan NA. Myopia control: why each diopter matters. Optom Vis Sci. 2019;96:463–5.

    Article  PubMed  Google Scholar 

  16. Chua SY, Sabanayagam C, Cheung YB, Chia A, Valenzuela RK, Tan D, et al. Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children. Ophthalmic Physiol Opt. 2016;36:388–94.

    Article  PubMed  Google Scholar 

  17. Hu Y, Ding X, Guo X, Chen Y, Zhang J, He M. Association of age at myopia onset with risk of high myopia in adulthood in a 12-year follow-up of a Chinese cohort. JAMA Ophthalmol. 2020;138:1129–34.

    Article  PubMed  Google Scholar 

  18. COMET Group. Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET). Invest Ophthalmol Vis Sci. 2013;54:7871–84.

    Article  Google Scholar 

  19. Hyman L, Gwiazda J, Marsh-Tootle WL, Norton TT, Hussein M. The Correction of Myopia Evaluation Trial (COMET): design and general baseline characteristics. Control Clin Trials. 2001;22:573–92.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao J, Mao J, Luo R, Li F, Munoz SR, Ellwein LB. The progression of refractive error in school-age children: Shunyi district, China. Am J Ophthalmol. 2002;134:735–43.

    Article  PubMed  Google Scholar 

  21. Saw SM, Tong L, Chua WH, Chia KS, Koh D, Tan DT, et al. Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Vis Sci. 2005;46:51–7.

    Article  PubMed  Google Scholar 

  22. Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2007;48:2510–9.

    Article  PubMed  Google Scholar 

  23. Jones LA, Mitchell GL, Mutti DO, Hayes JR, Moeschberger ML, Zadnik K. Comparison of ocular component growth curves among refractive error groups in children. Invest Ophthalmol Vis Sci. 2005;46:2317–27.

    Article  PubMed  Google Scholar 

  24. Brennan NA, Toubouti YM, Cheng X, Bullimore MA. Efficacy in myopia control. Prog Retin Eye Res. 2021;83:100923.

    Article  PubMed  Google Scholar 

  25. Matsumura S, Lanca C, Htoon HM, Brennan N, Tan CS, Kathrani B, et al. Annual myopia progression and subsequent 2-year myopia progression in Singaporean children. Transl Vis Sci Technol. 2020;9:12.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mutti DO, Sinnott LT, Brennan NA, Cheng X, Zadnik K, Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study Group The limited value of prior change in predicting future progression of juvenile-onset myopia. Optom Vis Sci. 2022;99:424–33.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zloto O, Wygnanski-Jaffe T, Farzavandi SK, Gomez-de-Liano R, Sprunger DT, Mezer E. Current trends among pediatric ophthalmologists to decrease myopia progression—an international perspective. Graefes Arch Clin Exp Ophthalmol. 2018;256:2457–66.

    Article  PubMed  Google Scholar 

  28. Leshno A, Farzavandi SK, Gomez-de-Liano R, Sprunger DT, Wygnanski-Jaffe T, Mezer E. Practice patterns to decrease myopia progression differ among paediatric ophthalmologists around the world. Br J Ophthalmol. 2020;104:535–40.

    Article  PubMed  Google Scholar 

  29. Fricke TR, Sankaridurg P, Naduvilath T, Resnikoff S, Tahhan N, He M, et al. Establishing a method to estimate the effect of antimyopia management options on lifetime cost of myopia. Br J Ophthalmol. 2023;107:1043–50.

  30. Zheng YF, Pan CW, Chay J, Wong TY, Finkelstein E, Saw SM. The economic cost of myopia in adults aged over 40 years in Singapore. Invest Ophthalmol Vis Sci. 2013;54:7532–7.

    Article  PubMed  Google Scholar 

  31. Mutti DO, Mitchell GL, Sinnott LT, Jones-Jordan LA, Moeschberger ML, Cotter SA, et al. Corneal and crystalline lens dimensions before and after myopia onset. Optom Vis Sci. 2012;89:251–62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hyman L, Gwiazda J, Hussein M, Norton TT, Wang Y, Marsh-Tootle W, et al. Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial. Arch Ophthalmol. 2005;123:977–87.

    Article  PubMed  Google Scholar 

  33. Tideman JW, Snabel MC, Tedja MS, van Rijn GA, Wong KT, Kuijpers RW, et al. Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia. JAMA Ophthalmol. 2016;134:1355–63.

    Article  PubMed  Google Scholar 

  34. Bullimore MA, Slade S, Yoo P, Otani T. An evaluation of the IOLMaster 700. Eye Contact Lens. 2019;45:117–23.

    Article  PubMed  Google Scholar 

  35. Sheng H, Bottjer CA, Bullimore MA. Ocular component measurement using the Zeiss IOLMaster. Optom Vis Sci. 2004;81:27–34.

    Article  PubMed  Google Scholar 

  36. Morgan PB, McCullough SJ, Saunders KJ. Estimation of ocular axial length from conventional optometric measures. Cont Lens Anterior Eye. 2020;43:18–20.

    Article  PubMed  Google Scholar 

  37. Bullimore MA, Fusaro RE, Adams CW. The repeatability of automated and clinician refraction. Optom Vis Sci. 1998;75:617–22.

    Article  CAS  PubMed  Google Scholar 

  38. Egashira SM, Kish LL, Twelker JD, Mutti DO, Zadnik K, Adams AJ. Comparison of cyclopentolate versus tropicamide cycloplegia in children. Optom Vis Sci. 1993;70:1019–26.

    Article  CAS  PubMed  Google Scholar 

  39. Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, Ohno-Matsui K, et al. IMI—defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci. 2019;60:M20–30.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zadnik K, Sinnott LT, Cotter SA, Jones-Jordan LA, Kleinstein RN, Manny RE, et al. Prediction of juvenile-onset myopia. JAMA Ophthalmol. 2015;133:683–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bullimore MA, Brennan NA. Myopia: an ounce of prevention is worth a pound of cure. Ophthalmic Physiol Opt. 2023;43:116–21.

    Article  PubMed  Google Scholar 

  42. Deng L, Pang Y. Effect of outdoor activities in myopia control: meta-analysis of clinical studies. Optom Vis Sci. 2019;96:276–82.

    Article  PubMed  Google Scholar 

  43. Jones-Jordan LA, Sinnott LT, Chu RH, Cotter SA, Kleinstein RN, Manny RE, et al. Myopia progression as a function of sex, age, and ethnicity. Invest Ophthalmol Vis Sci. 2021;62:36.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yam JC, Zhang XJ, Zhang Y, Yip BHK, Tang F, Wong ES, et al. Effect of low-concentration atropine eyedrops vs placebo on myopia incidence in children: the LAMP2 randomized clinical trial. JAMA. 2023;329:472–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Donovan L, Sankaridurg P, Ho A, Naduvilath T, Smith EL 3rd, Holden BA. Myopia progression rates in urban children wearing single-vision spectacles. Optom Vis Sci. 2012;89:27–32.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shamp W, Brennan NA, Maynes E, Cheng X, Bullimore MA. Influence of age and race on axial elongation in myopic children. Invest Ophthalmol Vis Sci. 2022;63:257.

    Google Scholar 

  47. Logan NS, Shah P, Rudnicka AR, Gilmartin B, Owen CG. Childhood ethnic differences in ametropia and ocular biometry: the Aston Eye Study. Ophthalmic Physiol Opt. 2011;31:550–8.

    Article  PubMed  Google Scholar 

  48. Sankaridurg P, Donovan L, Varnas S, Ho A, Chen X, Martinez A, et al. Spectacle lenses designed to reduce progression of myopia: 12-month results. Optom Vis Sci. 2010;87:631–41.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cheng X, Xu J, Chehab K, Exford J, Brennan N. Soft contact lenses with positive spherical aberration for myopia control. Optom Vis Sci. 2016;93:353–66.

    Article  PubMed  Google Scholar 

  50. Read SA, Collins MJ, Vincent SJ. Light exposure and eye growth in childhood. Invest Ophthalmol Vis Sci. 2015;56:6779–87.

    Article  PubMed  Google Scholar 

  51. Kanda H, Oshika T, Hiraoka T, Hasebe S, Ohno-Matsui K, Ishiko S, et al. Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial. Jpn J Ophthalmol. 2018;62:537–43.

    Article  CAS  PubMed  Google Scholar 

  52. Hansen MH, Kessel L, Li XQ, Skovgaard AM, Larsen M, Munch IC. Axial length change and its relationship with baseline choroidal thickness—a five-year longitudinal study in Danish adolescents: the CCC2000 eye study. BMC Ophthalmol. 2020;20:152.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007;48:3524–32.

    Article  PubMed  Google Scholar 

  54. Saw SM, Chua WH, Gazzard G, Koh D, Tan DT, Stone RA. Eye growth changes in myopic children in Singapore. Br J Ophthalmol. 2005;89:1489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kurtz D, Hyman L, Gwiazda JE, Manny R, Dong LM, Wang Y, et al. Role of parental myopia in the progression of myopia and its interaction with treatment in COMET children. Invest Ophthalmol Vis Sci. 2007;48:562–70.

    Article  PubMed  Google Scholar 

  56. Ma Y, Zou H, Lin S, Xu X, Zhao R, Lu L, et al. Cohort study with 4-year follow-up of myopia and refractive parameters in primary schoolchildren in Baoshan District, Shanghai. Clin Exp Ophthalmol. 2018;46:861–72.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sanchez-Tocino H, Villanueva Gomez A, Gordon Bolanos C, Alonso Alonso I, Vallelado Alvarez A, Garcia Zamora M, et al. The effect of light and outdoor activity in natural lighting on the progression of myopia in children. J Fr Ophtalmol. 2019;42:2–10.

    Article  CAS  PubMed  Google Scholar 

  58. Hua WJ, Jin JX, Wu XY, Yang JW, Jiang X, Gao GP, et al. Elevated light levels in schools have a protective effect on myopia. Ophthalmic Physiol Opt. 2015;35:252–62.

    Article  PubMed  Google Scholar 

  59. Donovan L, Sankaridurg P, Ho A, Chen X, Lin Z, Thomas V, et al. Myopia progression in Chinese children is slower in summer than in winter. Optom Vis Sci. 2012;89:1196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fulk GW, Cyert LA, Parker DA. Seasonal variation in myopia progression and ocular elongation. Optom Vis Sci. 2002;79:46–51.

    Article  PubMed  Google Scholar 

  61. Polling JR, Klaver C, Tideman JW. Myopia progression from wearing first glasses to adult age: the DREAM Study. Br J Ophthalmol. 2022;106:820–4.

    Article  PubMed  Google Scholar 

  62. Chen Y, Zhang J, Morgan IG, He M. Identifying children at risk of high myopia using population centile curves of refraction. PLoS ONE. 2016;11:e0167642.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim DH, Lim HT. Myopia growth chart based on a population-based survey (KNHANES IV-V): a novel prediction model of myopic progression in childhood. J Pediatr Ophthalmol Strabismus. 2019;56:73–7.

    Article  PubMed  Google Scholar 

  64. Truckenbrod C, Meigen C, Brandt M, Vogel M, Wahl S, Jurkutat A, et al. Reference curves for refraction in a German cohort of healthy children and adolescents. PLoS ONE. 2020;15:e0230291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tideman JWL, Polling JR, Vingerling JR, Jaddoe VWV, Williams C, Guggenheim JA, et al. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol. 2018;96:301–9.

    Article  PubMed  Google Scholar 

  66. Sanz Diez P, Yang LH, Lu MX, Wahl S, Ohlendorf A. Growth curves of myopia-related parameters to clinically monitor the refractive development in Chinese schoolchildren. Graefes Arch Clin Exp Ophthalmol. 2019;257:1045–53.

    Article  PubMed  Google Scholar 

  67. McCullough S, Adamson G, Breslin KMM, McClelland JF, Doyle L, Saunders KJ. Axial growth and refractive change in white European children and young adults: predictive factors for myopia. Sci Rep. 2020;10:15189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Truckenbrod C, Meigen C, Brandt M, Vogel M, Sanz Diez P, Wahl S, et al. Longitudinal analysis of axial length growth in a German cohort of healthy children and adolescents. Ophthalmic Physiol Opt. 2021;41:532–40.

    Article  PubMed  Google Scholar 

  69. Naduvilath T, He X, Xu X, Sankaridurg P. Normative data for axial elongation in Asian children. Ophthalmic Physiol Opt. 2023;43:1160–8.

  70. Klaver C, Polling JR, Erasmus Myopia Research Group. Myopia management in the Netherlands. Ophthalmic Physiol Opt. 2020;40:230–40.

    Article  PubMed  Google Scholar 

  71. Lichter PR, Musch DC, Gillespie BW, Guire KE, Janz NK, Wren PA, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–53.

    Article  CAS  PubMed  Google Scholar 

  72. Chamberlain P, Peixoto-de-Matos SC, Logan NS, Ngo C, Jones D, Young G. A 3-year randomized clinical trial of MiSight lenses for myopia control. Optom Vis Sci. 2019;96:556–67.

    Article  PubMed  Google Scholar 

  73. Lam CS, Tang WC, Tse DY, Tang YY, To CH. Defocus incorporated soft contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol. 2014;98:40–5.

    Article  PubMed  Google Scholar 

  74. Bao J, Huang Y, Li X, Yang A, Zhou F, Wu J, et al. Spectacle lenses with aspherical lenslets for myopia control vs single-vision spectacle lenses: a randomized clinical trial. JAMA Ophthalmol. 2022;140:472–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bullimore MA, Richdale K. Incidence of corneal adverse events in children wearing soft contact lenses. Eye Contact Lens. 2023;49:204–11.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Flitcroft I, Ainsworth J, Chia A, Cotter S, Harb E, Jin ZB, et al. IMI-management and investigation of high myopia in infants and young children. Invest Ophthalmol Vis Sci. 2023;64:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MAB and NAB conceived the manuscript; MAB and NAB wrote the first draft of the manuscript; MAB constructed the table and figure; Both MAB and NAB have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mark A. Bullimore.

Ethics declarations

Competing interests

MAB is a consultant for Alcon Research, Bruno Vision Care, CooperVision, EssilorLuxottica, Euclid Vision, Eyenovia, Genentech, Johnson & Johnson Vision, Novartis, Vyluma, and is the sole owner of Ridgevue Publishing and Ridgevue Vision. Preparation of this paper was supported by Johnson & Johnson Vision. NAB is an employee of Johnson & Johnson Vision.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bullimore, M.A., Brennan, N.A. Juvenile-onset myopia—who to treat and how to evaluate success. Eye 38, 450–454 (2024). https://doi.org/10.1038/s41433-023-02722-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02722-6

This article is cited by

Search

Quick links