Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA methylation profiling in Kabuki syndrome: reclassification of germline KMT2D VUS and sensitivity in validating postzygotic mosaicism

Abstract

Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison among different DNAm signatures for Kabuki syndrome.
Fig. 2: Validation of Kabuki syndrome by means of independent datasets.
Fig. 3: DNAm profiling to test for classification rare KMT2D variants of unknown clinical significance.
Fig. 4: DNAm profiling properly classifies pathogenic variants occurring at different level of mosaicism.

Similar content being viewed by others

Data availability

The genetic and clinical data that support the findings of this work are provided in the manuscript. Previously unreported variants and those that have been reclassified based on DNAm profiling were submitted to ClinVar (SCV004232735 to SCV004232752). The DNAm data are not publicly available due to privacy/ethical restrictions but are available on request from the corresponding author.

References

  1. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.

    Article  CAS  PubMed  Google Scholar 

  2. Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. Hum Mol Genet. 2019;28:R254–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet. 2023;23:1–18.

    Google Scholar 

  4. Niikawa N, Matsuura N, Fukushima Y, Ohsawa T, Kajii T. Kabuki make-up syndrome: a syndrome of mental retardation, unusual facies, large and protruding ears, and postnatal growth deficiency. J Pediatr. 1981;99:565–9.

    Article  CAS  PubMed  Google Scholar 

  5. Adam MP, Hudgins L, Hannibal M. Kabuki syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al. editors. GeneReviews [Internet]. Seattle (WA): University of Washington 2011; p. 1993–2023. (updated 2022).

  6. Makrythanasis P, van Bon BW, Steehouwer M, Rodríguez-Santiago B, Simpson M, Dias P, et al. MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study. Clin Genet. 2013;84:539–45.

    Article  CAS  PubMed  Google Scholar 

  7. Priestley JRC, Rippert AL, Condit C, Izumi K, Kallish S, Drivas TG. Unmasking the challenges of Kabuki syndrome in adulthood: A case series. Am J Med Genet C Semin Med Genet. 2023;193:128–38.

    Article  PubMed  Google Scholar 

  8. Adam MP, Banka S, Bjornsson HT, Bodamer O, Chudley AE, Harris J, et al. Kabuki syndrome: international consensus diagnostic criteria. J Med Genet. 2019;56:89–95.

    Article  PubMed  Google Scholar 

  9. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, et al. Structural basis for activity regulation of MLL family methyltransferases. Nature. 2016;530:447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC, et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet. 2012;90:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakraborty AA, Laukka T, Myllykoski M, Ringel AE, Booker MA, Tolstorukov MY, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science. 2007;318:447–50.

    Article  CAS  PubMed  Google Scholar 

  14. Bögershausen N, Gatinois V, Riehmer V, Kayserili H, Becker J, Thoenes M, et al. Mutation update for Kabuki syndrome genes KMT2D and KDM6A and further delineation of X-linked Kabuki syndrome subtype 2. Hum Mutat. 2016;37:847–64.

    Article  PubMed  Google Scholar 

  15. Li Y, Bögershausen N, Alanay Y, Simsek Kiper PO, Plume N, Keupp K, et al. A mutation screen in patients with Kabuki syndrome. Hum Genet. 2011;130:715–24.

    Article  CAS  PubMed  Google Scholar 

  16. Faundes V, Malone G, Newman WG, Banka S. A comparative analysis of KMT2D missense variants in Kabuki syndrome, cancers and the general population. J Hum Genet. 2019;64:161–70.

    Article  CAS  PubMed  Google Scholar 

  17. Banka S, Veeramachaneni R, Reardon W, Howard E, Bunstone S, Ragge N, et al. How genetically heterogeneous is Kabuki syndrome? MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum. Eur J Hum Genet. 2012;20:381–8.

    Article  CAS  PubMed  Google Scholar 

  18. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Banka S, Howard E, Bunstone S, Chandler KE, Kerr B, Lachlan K, et al. MLL2 mosaic mutations and intragenic deletion-duplications in patients with Kabuki syndrome. Clin Genet. 2013;83:467–71.

    Article  CAS  PubMed  Google Scholar 

  20. Lepri FR, Cocciadiferro D, Augello B, Alfieri P, Pes V, Vancini A, et al. Clinical and neurobehavioral features of three novel Kabuki syndrome patients with mosaic KMT2D mutations and a review of literature. Int J Mol Sci. 2017;19:82.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Montano C, Britton JF, Harris JR, Kerkhof J, Barnes BT, Lee JA, et al. Genome-wide DNA methylation profiling confirms a case of low-level mosaic Kabuki syndrome 1. Am J Med Genet A. 2022;188:2217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawai T, Iwasaki Y, Ogata-Kawata H, Kamura H, Nakamura K, Hata K, et al. Identification of a KDM6A somatic mutation responsible for Kabuki syndrome by excluding a conflicting KMT2D germline variant through episignature analysis. Eur J Med Genet. 2023;66:104806.

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez F, Assenov Y, Martin-Subero JI, Balint B, Siebert R, Taniguchi H, et al. A DNA methylation fingerprint of 1628 human samples. Genome Res. 2012;22:407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chater-Diehl E, Goodman SJ, Cytrynbaum C, Turinsky AL, Choufani S, Weksberg R. Anatomy of DNA methylation signatures: emerging insights and applications. Am J Hum Genet. 2021;108:1359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, Napier M, et al. Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am J Hum Genet. 2019;104:685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aref-Eshghi E, Kerkhof J, Pedro VP, Groupe DI France, Barat-Houari M, Ruiz-Pallares N, et al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am J Hum Genet. 2020;106:356–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sadikovic B, Levy MA, Kerkhof J, Aref-Eshghi E, Schenkel L, Stuart A, et al. Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders. Gen Med. 2021;23:1065–74.

    CAS  Google Scholar 

  28. Ciolfi A, Aref-Eshghi E, Pizzi S, Pedace L, Miele E, Kerkhof J, et al. Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature. Clin Epigenet. 2020;12:7.

    Article  CAS  Google Scholar 

  29. Ciolfi A, Foroutan A, Capuano A, Pedace L, Travaglini L, Pizzi S, et al. Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile. Clin Epigenet. 2021;13:157.

    Article  CAS  Google Scholar 

  30. Pagliara D, Ciolfi A, Pedace L, Haghshenas S, Ferilli M, Levy MA, et al. Identification of a robust DNA methylation signature for Fanconi anemia. Am J Hum Genet. 2023;110:1938–49.

    Article  CAS  PubMed  Google Scholar 

  31. Butcher DT, Cytrynbaum C, Turinsky AL, Siu MT, Inbar-Feigenberg M, Mendoza-Londono R, et al. CHARGE and Kabuki syndromes: gene-specific DNA Methylation signatures identify epigenetic mechanisms linking these clinically overlapping conditions. Am J Hum Genet. 2017;100:773–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oexle K, Zech M, Stühn LG, Siegert S, Brunet T, Schmidt WM, et al. Episignature analysis of moderate effects and mosaics. Eur J Hum Genet. 2023;31:1032–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dentici ML, Di Pede A, Lepri FR, Gnazzo M, Lombardi MH, Auriti C, et al. Kabuki syndrome: clinical and molecular diagnosis in the first year of life. Arch Dis Child. 2015;100:158–64.

    Article  PubMed  Google Scholar 

  34. Hildonen M, Ferilli M, Hjortshøj TD, Dunø M, Risom L, Bak M, et al. DNA methylation signature classification of rare disorders using publicly available methylation data. Clin Genet. 2023;103:688–92.

    Article  CAS  PubMed  Google Scholar 

  35. Paderova J, Drabova J, Holubova A, Vlckova M, Havlovicova M, Gregorova A, et al. Under the mask of Kabuki syndrome: elucidation of genetic-and phenotypic heterogeneity in patients with Kabuki-like phenotype. Eur J Med Genet. 2018;61:315–21.

    Article  PubMed  Google Scholar 

  36. Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33:3982–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fortin JP, Triche TJ Jr, Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33:558–60.

    Article  CAS  PubMed  Google Scholar 

  38. Taft LM, Evans RS, Shyu CR, Egger MJ, Chawla N, Mitchell JA, et al. Countering imbalanced datasets to improve adverse drug event predictive models in labor and delivery. J Biomed Inf. 2009;42:356–64.

    Article  CAS  Google Scholar 

  39. Cocciadiferro D, Augello B, De Nittis P, Zhang J, Mandriani B, Malerba N, et al. Dissecting KMT2D missense mutations in Kabuki syndrome patients. Hum Mol Genet. 2018;27:3651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giuili E, Grolaux R, Macedo CZNM, Desmyter L, Pichon B, Neuens S, et al. Comprehensive evaluation of the implementation of episignatures for diagnosis of neurodevelopmental disorders (NDDs). Hum Genet. 2023;142:1721–35.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Halvorsen M, Petrovski S, Shellhaas R, Tang Y, Crandall L, Goldstein D, et al. Mosaic mutations in early-onset genetic diseases. Genet Med. 2016;18:746–9.

    Article  CAS  PubMed  Google Scholar 

  42. Murakami H, Tsurusaki Y, Enomoto K, Kuroda Y, Yokoi T, Furuya N, et al. Update of the genotype and phenotype of KMT2D and KDM6A by genetic screening of 100 patients with clinically suspected Kabuki syndrome. Am J Med Genet A. 2020;182:2333–44.

    Article  CAS  PubMed  Google Scholar 

  43. Manheimer KB, Richter F, Edelmann LJ, D’Souza SL, Shi L, Shen Y, et al. Robust identification of mosaic variants in congenital heart disease. Hum Genet. 2018;137:183–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aref-Eshghi E, Bourque DK, Kerkhof J, Carere DA, Ainsworth P, Sadikovic B, et al. Genome-wide DNA methylation and RNA analyses enable reclassification of two variants of uncertain significance in a patient with clinical Kabuki syndrome. Hum Mutat. 2019;40:1684–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the families who participated in this study.

Funding

This work was supported, in part, by the Italian Ministry of Health (5 × 1000_2019 and RCR-2022-23682289 to MT, and Current Research Funds to AC), and Italian Ministry of Research (FOE_2020 to MT).

Author information

Authors and Affiliations

Authors

Contributions

MN, AC, and MT conceived the work, interpreted the data, and wrote the manuscript. AC, MF, LP, CC, CN, MH, LC, EM, and ZT contributed to the DNAm analyses. MN, MLD, MG, CC, EP, AB, AN, SM, AS, GM, BD, and MCD collected the clinical and genetic data. MP contributed to the clinical data analyses. All co-authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Marco Tartaglia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was approved by the local Institutional Ethical Committee (ref. 1702_OPBG_2018). Clinical data, and DNA samples were collected and used after signed informed consents from the participating subjects/families were secured.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niceta, M., Ciolfi, A., Ferilli, M. et al. DNA methylation profiling in Kabuki syndrome: reclassification of germline KMT2D VUS and sensitivity in validating postzygotic mosaicism. Eur J Hum Genet (2024). https://doi.org/10.1038/s41431-024-01597-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-024-01597-9

Search

Quick links