Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A yeast based assay establishes the pathogenicity of novel missense ACTA2 variants associated with aortic aneurysms

Abstract

The ACTA2 gene codes for alpha-smooth muscle actin, a critical component of the contractile apparatus of the vascular smooth muscle cells. Autosomal dominant variants in the ACTA2 gene have been associated to familial non-syndromic thoracic aortic aneurysm/dissection (TAAD). They are thought to act through a dominant-negative mechanism. These variants display incomplete penetrance and variable expressivity, complicating the validation of ACTA2 variants pathogenicity by family segregation studies. In this study, we developed a yeast based assay to test putative TAAD-associated ACTA2 variants. We identified five new heterozygous ACTA2 missense variants in TAAD patients through next generation sequencing. We decided to test their pathogenicity in Saccharomyces cerevisiae, since yeast actin is very similar to human alpha-smooth muscle actin, and the residues at which the TAAD-associated variants occur in ACTA2 are well conserved. A wild type yeast strain was transformed with a vector expressing the different mutant alleles, to model the heterozygous condition of patients. Then, we evaluated yeast growth by spot test and cytoskeletal and mitochondrial morphology by fluorescence microscopy. We found that mutant yeast strains displayed only mild growth defects but a significant increase in the percentage of cells with abnormal mitochondrial distribution and abnormal organization of the actin cytoskeleton compared to controls. All variants appeared to interfere with the activity of wild type actin in yeast, suggesting a dominant-negative pathogenic mechanism. Our results demonstrate the utility of using the yeast actin model system to validate the pathogenicity of TAAD-associated ACTA2 variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of thoracic aortic aneurysm and/or dissection-associated actin variants on yeast growth at 30 °C on solid media (Spot test assay).
Fig. 2: Differences in actin protein levels expressed from pYES2 vector in presence of different concentrations of galactose.
Fig. 3: Effect of thoracic aortic aneurysm and/or dissection-associated actin variants on actin-dependent yeast mitochondrial morphology.
Fig. 4: Effect of thoracic aortic aneurysm and/or dissection-associated actin variants on yeast cytoskeletal morphology.

Similar content being viewed by others

Data availability

The authors declare that all supporting data are available either within the article or upon request to the corresponding author. The variants identified in this work have been submitted to ClinVar by our group (c.218T > C, SCV004024262; c.648G > C, SCV004024222; c.655T > C, SCV004024263), or previously submitted by others (c.78C > A, VCV000580143.10; c.79G > A, VCV001329101.4; c.352C > T, VCV001053987.14, and c.772C > T, VCV000018278.16).

References

  1. Pollard TD. Actin and actin-binding proteins. Cold Spring Harb Perspect Biol. 2016;8:a018226. https://doi.org/10.1101/cshperspect.a018226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perrin BJ, Ervasti JM. The actin gene family: function follows isoform. Cytoskeleton. 2010;67:630–4. https://doi.org/10.1002/cm.20475.

    Article  CAS  PubMed  Google Scholar 

  3. Lehman W, Morgan KG. Structure and dynamics of the actin-based smooth muscle contractile and cytoskeletal apparatus. J Muscle Res Cell Motil. 2012;33:461–9. https://doi.org/10.1007/s10974-012-9283-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fatigati V, Murphy RA. Actin and tropomyosin variants in smooth muscles. Dependence on tissue type. J Biol Chem. 1984;259:14383–8. https://doi.org/10.1016/S0021-9258(17)42610-X.

    Article  CAS  PubMed  Google Scholar 

  5. Lu H, Fagnant PM, Bookwalter CS, Joel P, Trybus KM. Vascular disease-causing pathogenic variant R258C in ACTA2 disrupts actin dynamics and interaction with myosin. Proc Natl Acad Sci USA. 2015;112:E4168–77. https://doi.org/10.1073/pnas.1507587112.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Pathogenic variants in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488–93. https://doi.org/10.1038/ng.2007.6.

    Article  CAS  PubMed  Google Scholar 

  7. Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84:617–27. https://doi.org/10.1016/j.ajhg.2009.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Regalado ES, Mellor-Crummey L, De Backer J, Braverman AC, Ades L, Benedict S, et al. Clinical history and management recommendations of the smooth muscle dysfunction syndrome due to ACTA2 arginine 179 alterations. Genet Med. 2018;20:1206–15. https://doi.org/10.1038/gim.2017.245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan SM. α-smooth muscle actin and ACTA2 gene expressions in vasculopathies. Braz J Cardiovasc Surg. 2015;30:644–9. https://doi.org/10.5935/1678-9741.20150081.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arnaud P, Hanna N, Benarroch L, Aubart M, Bal L, Bouvagnet P, et al. Genetic diversity and pathogenic variants as possible predictors of severity in a French sample of nonsyndromic heritable thoracic aortic aneurysms and dissections (nshTAAD). Genet Med. 2019;21:2015–24. https://doi.org/10.1038/s41436-019-0444-y.

    Article  PubMed  Google Scholar 

  11. Milewicz DM, Carlson AA, Regalado ES. Genetic testing in aortic aneurysm disease: PRO. Cardiol Clin. 2010;28:191–7. https://doi.org/10.1016/j.ccl.2010.01.017.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Renard M, Callewaert B, Baetens M, Campens L, MacDermot K, Fryns JP, et al. Novel MYH11 and ACTA2 pathogenic variants reveal a role for enhanced TGFβ signaling in FTAAD. Int J Cardiol. 2013;165:314–21. https://doi.org/10.1016/j.ijcard.2011.08.079.

    Article  PubMed  Google Scholar 

  13. Mishra M, Huang J, Balasubramanian MK. The yeast actin cytoskeleton. FEMS Microbiol Rev. 2014;38:213–27. https://doi.org/10.1111/1574-6976.12064.

    Article  CAS  PubMed  Google Scholar 

  14. Ng R, Abelson J. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1980;77:3912–6. https://doi.org/10.1073/pnas.77.7.3912.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Macchione F, Salviati L, Bordugo A, Vincenzi M, Camilot M, Teofoli F, et al. Multiple acyl-COA dehydrogenase deficiency in elderly carriers. J Neurol. 2020;267:1414–9. https://doi.org/10.1007/s00415-020-09729-z.

    Article  CAS  PubMed  Google Scholar 

  16. Giniger E, Varnum SM, Ptashne M. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell. 1985;40:767–74. https://doi.org/10.1016/0092-8674(85)90336-8.

    Article  CAS  PubMed  Google Scholar 

  17. West RW, Yocum RR, Ptashne M. Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol Cell Biol. 1984;4:2467–78. https://doi.org/10.1128/mcb.4.11.2467-2478.1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gietz RD, Woods RA. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol 2006;313:107–20. https://doi.org/10.1385/1-59259-958-3:107.

    Article  CAS  PubMed  Google Scholar 

  19. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5. https://doi.org/10.1038/227680a0.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N, Neupert W, et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell. 2002;13:847–53. https://doi.org/10.1091/mbc.01-12-0588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Westermann B, Neupert W. Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast. 2000;16:1421–7. https://doi.org/10.1002/1097-0061(200011)16:153.0.co;2-u.

    Article  CAS  PubMed  Google Scholar 

  22. Bergeron SE, Wedemeyer EW, Lee R, Wen KK, McKane M, Pierick AR, et al. Allele-specific effects of thoracic aortic aneurysm and dissection alpha-smooth muscle actin pathogenic variants on actin function. J Biol Chem. 2011;286:11356–69. https://doi.org/10.1074/jbc.M110.203174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Writing Committee Members, Isselbacher EM, Preventza O, Hamilton Black J 3rd, Augoustides JG, Beck AW, et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: a report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Thorac Cardiovasc Surg. 2023;166:e182–331. https://doi.org/10.1016/j.jtcvs.2023.04.023.

    Article  Google Scholar 

  24. Devereux RB, de Simone G, Arnett DK, Best LG, Boerwinkle E, Howard BV, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons ≥15 years of age. Am J Cardiol. 2012;110:1189–94. https://doi.org/10.1016/j.amjcard.2012.05.063.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brownstein AJ, Ziganshin BA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes associated with thoracic aortic aneurysm and dissection: an update and clinical implications. Aorta. 2017;5:11–20. https://doi.org/10.12945/j.aorta.2017.17.003.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Johannes FJ, Gallwitz D. Site-directed mutagenesis of the yeast actin gene: a test for actin function in vivo. EMBO J. 1991;10:3951–8. https://doi.org/10.1002/j.1460-2075.1991.tb04965.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Z, Chang AN, Grinnell F, Trybus KM, Milewicz DM, Stull JT, et al. Vascular disease-causing mutation, smooth muscle α-actin R258C, dominantly suppresses functions of α-actin in human patient fibroblasts. Proc Natl Acad Sci USA. 2017;114:E5569–78. https://doi.org/10.1073/pnas.1703506114.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fehrenbacher KL, Yang HC, Gay AC, Huckaba TM, Pon LA. Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr Biol. 2004;14:1996–2004. https://doi.org/10.1016/j.cub.2004.11.004.

    Article  CAS  PubMed  Google Scholar 

  29. McKane M, Wen KK, Boldogh IR, Ramcharan S, Pon LA, Rubenstein PA. A mammalian actin substitution in yeast actin (H372R) causes a suppressible mitochondria/vacuole phenotype. J Biol Chem. 2005;280:36494–501. https://doi.org/10.1074/jbc.M506970200.

    Article  CAS  PubMed  Google Scholar 

  30. Drubin DG, Jones HD, Wertman KF. Actin structure and function: roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site. Mol Biol Cell. 1993;4:1277–94. https://doi.org/10.1091/mbc.4.12.1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parker F, Baboolal TG, Peckham M. Actin mutations and their role in disease. Int J Mol Sci. 2020;21:3371. https://doi.org/10.3390/ijms21093371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. An HS, Mogami K. Isolation of 88F actin mutants of Drosophila melanogaster and possible alterations in the mutant actin structures. J Mol Biol. 1996;260:492–505. https://doi.org/10.1006/jmbi.1996.0417.

    Article  CAS  PubMed  Google Scholar 

  33. Ilkovski B, Nowak KJ, Domazetovska A, Maxwell AL, Clement S, Davies KE, et al. Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum Mol Genet. 2004;13:1727–43. https://doi.org/10.1093/hmg/ddh185.

    Article  CAS  PubMed  Google Scholar 

  34. Veitia RA. Exploring the molecular etiology of dominant-negative pathogenic variants. Plant Cell. 2007;19:3843–51. https://doi.org/10.1105/tpc.107.055053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Regalado ES, Guo DC, Prakash S, Bensend TA, Flynn K, Estrera A, et al. Aortic disease presentation and outcome associated with ACTA2 mutations. Circ Cardiovasc Genet. 2015;8:457–64. https://doi.org/10.1161/CIRCGENETICS.114.000943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bartolák-Suki E, Imsirovic J, Nishibori Y, Krishnan R, Suki B. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int J Mol Sci. 2017;18:1812. https://doi.org/10.3390/ijms18081812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shah M, Chacko LA, Joseph JP, Ananthanarayanan V. Mitochondrial dynamics, positioning and function mediated by cytoskeletal interactions. Cell Mol Life Sci. 2021;78:3969–86. https://doi.org/10.1007/s00018-021-03762-5.

    Article  CAS  PubMed  Google Scholar 

  38. Portelli SS, Hambly BD, Jeremy RW, Robertson EN. Oxidative stress in genetically triggered thoracic aortic aneurysm: role in pathogenesis and therapeutic opportunities. Redox Rep. 2021;26:45–52. https://doi.org/10.1080/13510002.2021.1899473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suslov AV, Afanasyev MA, Degtyarev PA, Chumachenko PV, Ekta MB, Sukhorukov VN, et al. Molecular pathogenesis and the possible role of mitochondrial heteroplasmy in thoracic aortic aneurysm. Life. 2021;11:1395. https://doi.org/10.3390/life11121395.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calderan C. Development of yeast models for validating novel pathogenic mutations associated with human aortic aneurysm and primary Coenzyme Q10 deficiency. Research Padua Archive. 2023. https://hdl.handle.net/11577/3469813.

Download references

Acknowledgements

This research was part of a doctoral dissertation by CC with the title “Development of yeast models for validating novel pathogenic mutations associated with human aortic aneurysm and primary Coenzyme Q10 deficiency” [40].

Funding

This work was supported by a grant from “IRP—Città della Speranza” to LS.

Author information

Authors and Affiliations

Authors

Contributions

CC, MAD and LS conceived the study concept; LS acquired funding; US, ET and LS collected patients’ samples and clinical data, and performed the molecular diagnosis; CC performed functional studies and microscopic analysis; MAD, LP, GS and LS provided their expertise for the experiments; CC, MAD, GS and LS wrote and edited the manuscript; all authors reviewed and commented on the final draft manuscript.

Corresponding author

Correspondence to Maria Andrea Desbats.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Ethical approval was not needed in this study because we only used data from patients obtained in our diagnostic genetics unit. All genetic studies were performed with the informed consent of the patients which also accepted the use of results for research studies. All experiments were performed without employing biological material from the patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderan, C., Sorrentino, U., Persano, L. et al. A yeast based assay establishes the pathogenicity of novel missense ACTA2 variants associated with aortic aneurysms. Eur J Hum Genet (2024). https://doi.org/10.1038/s41431-024-01591-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-024-01591-1

Search

Quick links