Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of saturated and monounsaturated fatty acids on cognitive impairment: evidence from Mendelian randomization study

Abstract

Background

Prior observational studies have suggested correlations between saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) with cognitive function. However, causal relationships remains unclear.

Methods

We assessed the causal impact of two SFAs (palmitic acid [PA] and stearic acid [SA]) and two MUFAs (oleic acid [OA] and palmitoleic acid [POA]) on cognitive function-related traits, and dementia-related traits by univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) analyses.

Results

UVMR indicated β of 0.060 (P = 4.05E−06) for cognitive performance score and 0.066 (P = 4.21E−04) for fluid intelligence per standard deviation (SD) increase in OA level. MVMR indicated: (i) β of −0.608 (P = 8.37E−05) for fluid intelligence score per SD increase in POA; (ii) β of 0.074 (P = 0.018) for fluid intelligence score per SD increase in OA; (iii) β of 0.029 (P = 0.033) for number of incorrect matches in round per SD increase in PA; and (iv) β of 0.039 (P = 0.032) for number of incorrect matches in round per SD increase in SA. In addition, a secondary MVMR analysis after excluding the effect of polyunsaturated fatty acids suggested that: (i) β of −0.043 (P = 1.97E−02) for cognitive performance score per SD increase in PA and (ii) β of −0.079 (P = 1.79E−03) for cognitive performance score per SD increase in SA.

Conclusions

Overall, UVMR and MVMR suggest that OA may be beneficial for cognitive function, while POA, PA, and SA may have detrimental effects on cognitive function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General flowchart of the present MR study.

Similar content being viewed by others

Data availability

The GWAS summary statistics used for this MR study are shown in Supplementary Table S1.

Code availability

The code used for this study is available at https://doi.org/10.6084/m9.figshare.25335814.v1.

References

  1. Turrini S, Wong B, Eldaief M, Press DZ, Sinclair DA, Koch G, et al. The multifactorial nature of healthy brain ageing: Brain changes, functional decline and protective factors. Ageing Res Rev. 2023;88:101939 https://doi.org/10.1016/j.arr.2023.101939.

    Article  PubMed  Google Scholar 

  2. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–46. https://doi.org/10.1016/s0140-6736(20)30367-6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Naqvi AZ, Harty B, Mukamal KJ, Stoddard AM, Vitolins M, Dunn JE. Monounsaturated, trans, and saturated Fatty acids and cognitive decline in women. J Am Geriatrics Soc. 2011;59:837–43. https://doi.org/10.1111/j.1532-5415.2011.03402.x.

    Article  Google Scholar 

  4. Barnard ND, Bunner AE, Agarwal U. Saturated and trans fats and dementia: a systematic review. Neurobiol Aging. 2014;35:S65–73. https://doi.org/10.1016/j.neurobiolaging.2014.02.030.

    Article  CAS  PubMed  Google Scholar 

  5. Solfrizzi V, Capurso C, D’Introno A, Colacicco AM, Frisardi V, Santamato A, et al. Dietary fatty acids, age-related cognitive decline, and mild cognitive impairment. J Nutr Health Aging. 2008;12:382–6. https://doi.org/10.1007/bf02982670.

    Article  CAS  PubMed  Google Scholar 

  6. Okereke OI, Rosner BA, Kim DH, Kang JH, Cook NR, Manson JE, et al. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann Neurol. 2012;72:124–34. https://doi.org/10.1002/ana.23593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan R, Zhao L, Ding BJ, Xiao R, Ma WW. The association of blood non-esterified fatty acid, saturated fatty acids, and polyunsaturated fatty acids levels with mild cognitive impairment in Chinese population aged 35-64 years: a cross-sectional study. Nutritional Neurosci. 2021;24:148–60. https://doi.org/10.1080/1028415x.2019.1610606.

    Article  CAS  Google Scholar 

  8. Yuan L, Zhen J, Ma W, Cai C, Huang X, Xiao R. The Erythrocyte Fatty Acid Profile and Cognitive Function in Old Chinese Adults. Nutrients. 2016;8:385 https://doi.org/10.3390/nu8070385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen J, Yu H, Li K, Ding B, Xiao R, Ma W. The Association Between Plasma Fatty Acid and Cognitive Function Mediated by Inflammation in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes Targets Ther. 2022;15:1423–36. https://doi.org/10.2147/dmso.S353449.

    Article  CAS  Google Scholar 

  10. Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22. https://doi.org/10.1093/ije/dyg070.

    Article  PubMed  Google Scholar 

  11. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63. https://doi.org/10.1002/sim.3034.

    Article  PubMed  Google Scholar 

  12. Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian Randomization as an Approach to Assess Causality Using Observational Data. J Am Soc Nephrol. 2016;27:3253–65. https://doi.org/10.1681/asn.2016010098.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tomata Y, Larsson SC, Hägg S. Polyunsaturated fatty acids and risk of Alzheimer’s disease: a Mendelian randomization study. Eur J Nutr. 2020;59:1763–6. https://doi.org/10.1007/s00394-019-02126-x.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu X, Huang S, Kang W, Chen P, Liu J. Associations between polyunsaturated fatty acid concentrations and Parkinson’s disease: A two-sample Mendelian randomization study. Front aging Neurosci. 2023;15:1123239 https://doi.org/10.3389/fnagi.2023.1123239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601 https://doi.org/10.1136/bmj.k601.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu JH, Lemaitre RN, Manichaikul A, Guan W, Tanaka T, Foy M, et al. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circ Cardiovasc Genet. 2013;6:171–83. https://doi.org/10.1161/circgenetics.112.964619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21. https://doi.org/10.1038/s41588-018-0147-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun. 2018;9:2098 https://doi.org/10.1038/s41467-018-04362-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–36. https://doi.org/10.1038/s41588-022-01024-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18. https://doi.org/10.1038/s41586-022-05473-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boehm FJ, Zhou X. Statistical methods for Mendelian randomization in genome-wide association studies: A review. Comput Struct Biotechnol J. 2022;20:2338–51. https://doi.org/10.1016/j.csbj.2022.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, et al. Recent Developments in Mendelian Randomization Studies. Curr Epidemiol Rep. 2017;4:330–45. https://doi.org/10.1007/s40471-017-0128-6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851–3. https://doi.org/10.1093/bioinformatics/btz469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guan W, Steffen BT, Lemaitre RN, Wu JHY, Tanaka T, Manichaikul A, et al. Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium. Circ Cardiovasc Genet. 2014;7:321–31. https://doi.org/10.1161/circgenetics.113.000208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet. 2011;7:e1002193 https://doi.org/10.1371/journal.pgen.1002193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen W, Song Z, Zhong X, Huang M, Shen D, Gao P et al. Sangerbox: A comprehensive, interaction‐friendly clinical bioinformatics analysis platform. Imeta. 2022;1:e36.

  27. Dumas JA, Bunn JY, Nickerson J, Crain KI, Ebenstein DB, Tarleton EK, et al. Dietary saturated fat and monounsaturated fat have reversible effects on brain function and the secretion of pro-inflammatory cytokines in young women. Metab Clin Exp. 2016;65:1582–8. https://doi.org/10.1016/j.metabol.2016.08.003.

    Article  CAS  PubMed  Google Scholar 

  28. Baierle M, Vencato PH, Oldenburg L, Bordignon S, Zibetti M, Trentini CM, et al. Fatty acid status and its relationship to cognitive decline and homocysteine levels in the elderly. Nutrients. 2014;6:3624–40. https://doi.org/10.3390/nu6093624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Little JP, Madeira JM, Klegeris A. The saturated fatty acid palmitate induces human monocytic cell toxicity toward neuronal cells: exploring a possible link between obesity-related metabolic impairments and neuroinflammation. J Alzheimers Dis. 2012;30:S179–183. https://doi.org/10.3233/jad-2011-111262.

    Article  PubMed  Google Scholar 

  30. Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem. 2012;120:1060–71. https://doi.org/10.1111/j.1471-4159.2012.07660.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin J, Li S, Li J, Gong R, Jia Z, Liu J, et al. Association of serum oleic acid level with depression in American adults: a cross-sectional study. BMC Psychiatry. 2023;23:845 https://doi.org/10.1186/s12888-023-05271-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakurai K, Shen C, Shiraishi I, Inamura N, Hisatsune T. Consumption of Oleic Acid on the Preservation of Cognitive Functions in Japanese Elderly Individuals. Nutrients. 2021;13:284 https://doi.org/10.3390/nu13020284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Omar SH. Mediterranean and MIND Diets Containing Olive Biophenols Reduces the Prevalence of Alzheimer’s Disease. Int J Mol Sci. 2019;20:2797 https://doi.org/10.3390/ijms20112797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mazza E, Fava A, Ferro Y, Rotundo S, Romeo S, Bosco D, et al. Effect of the replacement of dietary vegetable oils with a low dose of extravirgin olive oil in the Mediterranean Diet on cognitive functions in the elderly. J Transl Med. 2018;16:10 https://doi.org/10.1186/s12967-018-1386-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. López-Miranda J, Pérez-Jiménez F, Ros E, De Caterina R, Badimón L, Covas MI, et al. Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr Metab Cardiovasc Dis. 2010;20:284–94. https://doi.org/10.1016/j.numecd.2009.12.007.

    Article  PubMed  Google Scholar 

  36. Kandel P, Semerci F, Mishra R, Choi W, Bajic A, Baluya D, et al. Oleic acid is an endogenous ligand of TLX/NR2E1 that triggers hippocampal neurogenesis. Proc Natl Acad Sci USA. 2022;119:e2023784119 https://doi.org/10.1073/pnas.2023784119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Snigdha S, Astarita G, Piomelli D, Cotman CW. Effects of diet and behavioral enrichment on free fatty acids in the aged canine brain. Neuroscience. 2012;202:326–33. https://doi.org/10.1016/j.neuroscience.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  38. Barman M, Nilsson S, Torinsson Naluai Å, Sandin A, Wold AE, Sandberg AS. Single Nucleotide Polymorphisms in the FADS Gene Cluster but not the ELOVL2 Gene are Associated with Serum Polyunsaturated Fatty Acid Composition and Development of Allergy (in a Swedish Birth Cohort). Nutrients. 2015;7:10100–15. https://doi.org/10.3390/nu7125521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Giménez-Alba IM, et al. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients. 2020;12:310 https://doi.org/10.3390/nu12020310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the GWAS Catalog database, IEU OpenGWAS project, Neale lab, and FinnGen consortium for providing GWAS summary-level statistics.

Funding

This research was funded by the Natural Science Foundation of Changsha City (No. kq2208356 to GL), Health Research Project of Hunan Provincial Health Commission (No. W20243026 to GL), Health Research Project of Hunan Provincial Health Commission (No. W20243009 to JT).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Guoxin Lin, Juan Tang; Methodology: Youjie Zeng, Si Cao; Software: Si Cao; Validation: Youjie Zeng, Si Cao; Formal analysis: Youjie Zeng, Si Cao; Investigation: Youjie Zeng, Si Cao; Resources: Guoxin Lin; Data Curation: Youjie Zeng, Si Cao; Writing - Original Draft: Youjie Zeng; Writing - Review & Editing: Guoxin Lin, Juan Tang; Visualization: Youjie Zeng, Si Cao; Supervision: Guoxin Lin; Project administration: Guoxin Lin, Juan Tang; Funding acquisition: Juan Tang, Guoxin Lin.

Corresponding authors

Correspondence to Juan Tang or Guoxin Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The MR study was a secondary analysis based on publicly available GWAS summary level statistics and therefore no additional ethical approval or informed consent was required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Cao, S., Tang, J. et al. Effects of saturated and monounsaturated fatty acids on cognitive impairment: evidence from Mendelian randomization study. Eur J Clin Nutr (2024). https://doi.org/10.1038/s41430-024-01437-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41430-024-01437-5

Search

Quick links