Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of low-carbohydrate diets, with and without caloric restriction, on inflammatory markers in adults: a systematic review and meta-analysis of randomized clinical trials

Abstract

Low-carbohydrate diets (LCDs) have gained interest due to their favorable effects on health outcomes, such as inflammation. However, further research is needed to ascertain the overall effects of LCDs on inflammatory parameters, but at the same time considering weight loss and calorie intake. Thus, a systematic review and meta-analysis of randomized clinical trials was performed to investigate the effects of LCDs compared with low-fat diets (LFDs), with and without caloric restriction, on inflammatory markers in adults. PubMed, Scopus, and Web of Science were searched through March 2022 to select intervention studies addressing LCDs vs. LFDs, in which the following circulating inflammatory markers were used: C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and interleukin (IL-6). Analyses were conducted comparing LCDs vs. LFDs through weighted mean differences (WMD) or standardized mean differences (SMD) and 95% confidence intervals (95% CIs) using random effects models. The systematic review and meta-analysis included a total of 51 studies with a total sample of 4,164 adults, with or without other chronic diseases. Intervention durations ranged from 2–144 weeks. LCDs, compared with LFDs, significantly decreased body weight [WMD = −1.35%, p = 0.001], CRP [SMD = −0.1, p = 0.03], and IL-6 [SMD = −0.15, p = 0.09]. However, LCDs did not significantly decrease TNF-α [SMD = −0.02, p = 0.7] compared to LFDs. In conclusion, LCDs have a beneficial effect on markers of inflammation by decreasing CRP and IL-6; this effect has an association with weight loss. However, LCDs were not more effective than LFDs in decreasing TNF-α.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Forest plot of the effects of low-carbohydrate diets vs. low-fat diets on body weight.
Fig. 3: Forest plot of the effects of low-carbohydrate diets vs. low-fat diets on CRP.
Fig. 4: Forest plot of the effects of low-carbohydrate diets vs. low-fat diets on TNF-α.
Fig. 5: Forest plot of the effects of low-carbohydrate diets vs. low-fat diets on IL-6.

Similar content being viewed by others

Data availability

Data extracted from included studies; data used for all analyses are publicly available.

References

  1. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2020;33:127–48. https://doi.org/10.1093/intimm/dxaa078.

    Article  CAS  PubMed Central  Google Scholar 

  2. Askarpour M, Karimi M, Hadi A, Ghaedi E, Symonds ME, Miraghajani M, et al. Effect of flaxseed supplementation on markers of inflammation and endothelial function: A systematic review and meta-analysis. Cytokine. 2020;126:154922.

    Article  CAS  PubMed  Google Scholar 

  3. Furman D, Campisi J, Verdin E. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32. https://doi.org/10.1038/s41591-019-0675-0.

  4. Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, Van Mechelen W, et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet. 2016;388:1311–24.

    Article  PubMed  Google Scholar 

  5. Wang X, Yang Q, Liao Q, Li M, Zhang P, Santos HO, et al. Effects of intermittent fasting diets on plasma concentrations of inflammatory biomarkers: a systematic review and meta-analysis of randomized controlled trials. Nutrition. 2020;79:110974.

    Article  PubMed  Google Scholar 

  6. Wang P, Zhang Q, Hou H, Liu Z, Wang L, Rasekhmagham R, et al. The effects of pomegranate supplementation on biomarkers of inflammation and endothelial dysfunction: A meta-analysis and systematic review. Compl Therapies Med. 2020;49:102358.

    Article  Google Scholar 

  7. Zhu Y, Huang Y, Santos HO, de Oliveira CV, Zhou H, Tang N. Effects of purslane supplementation on C‐reactive protein levels and biomarkers of oxidative stress as marks for metabolic syndrome: A systematic review and meta‐analysis of randomized controlled trials. Phytotherapy Res. 2021;35:5477–86.

    Article  CAS  Google Scholar 

  8. Santos HO, Genario R, Gomes GK, Schoenfeld BJ. Cherry intake as a dietary strategy in sport and diseases: a review of clinical applicability and mechanisms of action. Crit Rev Food Sci Nutr. 2021;61:417–30.

    Article  CAS  PubMed  Google Scholar 

  9. Kord HV, Tinsley GM, Santos HO, Zand H, Nazary A, Fatahi S, et al. The influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans: a systematic review and meta-analysis. Clin Nutr. 2021;40:1811–21.

    Article  Google Scholar 

  10. Barber TM, Hanson P, Kabisch S, Pfeiffer AF, Weickert MO. The low-carbohydrate diet: Short-term metabolic efficacy versus longer-term limitations. Nutrients. 2021;13:1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adam‐Perrot A, Clifton P, Brouns F. Low‐carbohydrate diets: nutritional and physiological aspects. Obes Rev. 2006;7:49–58.

    Article  PubMed  Google Scholar 

  12. Basolo A, Magno S, Santini F, Ceccarini G. Ketogenic Diet and Weight Loss: Is There an Effect on Energy Expenditure? Nutrients. 2022;14:1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chawla S, Tessarolo Silva F, Amaral Medeiros S, Mekary RA, Radenkovic D. The effect of low-fat and low-carbohydrate diets on weight loss and lipid levels: a systematic review and meta-analysis. Nutrients. 2020;12:3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dong T, Guo M, Zhang P, Sun G, Chen B. The effects of low-carbohydrate diets on cardiovascular risk factors: a meta-analysis. PloS One. 2020;15:e0225348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Macedo RC, Santos HO, Tinsley GM, Reischak-Oliveira A. Low-carbohydrate diets: Effects on metabolism and exercise–A comprehensive literature review. Clin Nutr ESPEN. 2020;40:17–26.

    Article  PubMed  Google Scholar 

  16. Santos HO, Earnest CP, Tinsley GM, Izidoro LF, Macedo RC. Small dense low-density lipoprotein-cholesterol (sdLDL-C): Analysis, effects on cardiovascular endpoints and dietary strategies. Progr Cardiovasc Dis. 2020;63:503–9.

    Article  Google Scholar 

  17. Oh R, Gilani B, Uppaluri K. Low-Carbohydrate Diet. StatPearls Publishing. 2022. Bookshelf ID: NBK537084

  18. Steckhan N, Hohmann C-D, Kessler C, Dobos G, Michalsen A, Cramer H. Effects of different dietary approaches on inflammatory markers in patients with metabolic syndrome: A systematic review and meta-analysis. Nutrition. 2016;32:338–48.

    Article  CAS  PubMed  Google Scholar 

  19. Field R, Field T, Pourkazemi F, Rooney K. Low-carbohydrate and ketogenic diets: a scoping review of neurological and inflammatory outcomes in human studies and their relevance to chronic pain. Nutr Res Rev. 2022:1–25; https://doi.org/10.1017/S0954422422000087.

  20. Apekey TA, Maynard MJ. Comparison of the Effectiveness of Low Carbohydrate Versus Low Fat Diets, in Type 2 Diabetes: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2022:14, https://doi.org/10.3390/nu14204391.

  21. Santos HO, Tinsley GM. Is breakfast consumption detrimental, unnecessary, or an opportunity for health promotion? A review of cardiometabolic outcomes and functional food choices. Diabetes Metabol Res Rev. 2023;40:e3684.

    Article  Google Scholar 

  22. Santos HO, Penha-Silva N. Translating the advanced glycation end products (AGEs) knowledge into real-world nutrition strategies. Eur J Clin Nutr. 2022;76:922–8.

    Article  PubMed  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG, Group* P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Internal Med. 2009;151:264–9.

    Article  Google Scholar 

  24. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:1–13.

    Article  Google Scholar 

  25. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons; 2019, https://onlinelibrary.wiley.com/doi/book/10.1002/9781119536604.

  26. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:1–10.

    Article  Google Scholar 

  27. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition. 2015;31:1–13.

    Article  CAS  PubMed  Google Scholar 

  29. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barbosa-Yañez RL, Dambeck U, Li L, Machann J, Kabisch S, Pfeiffer AFH. Acute endothelial benefits of fat restriction over carbohydrate restriction in type 2 diabetes mellitus: Beyond carbs and fats. Nutrients. 2018:10, https://doi.org/10.3390/nu10121859.

  31. Bazzano LA, Hu T, Reynolds K, Yao L, Bunol C, Liu Y, et al. Effects of low-carbohydrate and low-fat diets: a randomized trial. Ann Intern Med. 2014;161:309–18. https://doi.org/10.7326/m14-0180.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brinkworth GD, Noakes M, Buckley JD, Keogh JB, Clifton PM. Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo. Am J Clin Nutr. 2009;90:23–32. https://doi.org/10.3945/ajcn.2008.27326.

    Article  CAS  PubMed  Google Scholar 

  33. Buscemi S, Verga S, Tranchina MR, Cottone S, Cerasola G. Effects of hypocaloric very-low-carbohydrate diet vs. Mediterranean diet on endothelial function in obese women*. Eur J Clin Invest. 2009;39:339–47. https://doi.org/10.1111/j.1365-2362.2009.02091.x.

    Article  CAS  PubMed  Google Scholar 

  34. Cardillo S, Seshadri P, Iqbal N. The effects of a low-carbohydrate versus low-fat diet on adipocytokines in severely obese adults: three-year follow-up of a randomized trial. Eur Rev Med Pharmacol Sci. 2006;10:99–106.

    CAS  PubMed  Google Scholar 

  35. Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight watchers, and Zone diets for weight loss and heart disease risk reduction. JAMA. 2005;293:43–53. https://doi.org/10.1001/jama.293.1.43.

    Article  CAS  PubMed  Google Scholar 

  36. Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL, Garcia-Lago E, et al. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012;307:2627–34. https://doi.org/10.1001/jama.2012.6607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Forsythe CE, Phinney SD, Fernandez ML, Quann EE, Wood RJ, Bibus DM, et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids. 2008;43:65–77. https://doi.org/10.1007/s11745-007-3132-7.

    Article  CAS  PubMed  Google Scholar 

  38. Francois ME, Myette-Cote E, Bammert TD, Durrer C, Neudorf H, DeSouza CA, et al. Carbohydrate restriction with postmeal walking effectively mitigates postprandial hyperglycemia and improves endothelial function in type 2 diabetes. Am J Physiol Heart Circ Physiol. 2018;314:H105–h113. https://doi.org/10.1152/ajpheart.00524.2017.

    Article  CAS  PubMed  Google Scholar 

  39. Goss AM, Gower B, Soleymani T, Stewart M, Pendergrass M, Lockhart M et al. Effects of weight loss during a very low carbohydrate diet on specific adipose tissue depots and insulin sensitivity in older adults with obesity: a randomized clinical trial. Nutrition & Metabol. 2020:17, https://doi.org/10.1186/s12986-020-00481-9.

  40. Hu T, Yao L, Reynolds K, Whelton PK, Niu T, Li S, et al. The Effects of a Low-Carbohydrate Diet vs. a Low-Fat Diet on Novel Cardiovascular Risk Factors: A Randomized Controlled Trial. Nutrients. 2015;7:7978–94. https://doi.org/10.3390/nu7095377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Keogh JB, Brinkworth GD, Noakes M, Belobrajdic DP, Buckley JD, Clifton PM. Effects of weight loss from a very-low-carbohydrate diet on endothelial function and markers of cardiovascular disease risk in subjects with abdominal obesity. Am J Clin Nutr. 2008;87:567–76. https://doi.org/10.1093/ajcn/87.3.567.

    Article  CAS  PubMed  Google Scholar 

  42. Khodabakhshi A, Akbari ME, Mirzaei HR, Seyfried TN, Kalamian M, Davoodi SH. Effects of Ketogenic metabolic therapy on patients with breast cancer: A randomized controlled clinical trial. Clin Nutr. 2021;40:751–8. https://doi.org/10.1016/j.clnu.2020.06.028.

    Article  CAS  PubMed  Google Scholar 

  43. Myette-Côté É, Durrer C, Neudorf H, Bammert TD, Botezelli JD, Johnson JD, et al. The effect of a short-term low-carbohydrate, high-fat diet with or without postmeal walks on glycemic control and inflammation in type 2 diabetes: a randomized trial. Am J Physiol Regul Integr Comp Physiol. 2018;315:R1210–r1219. https://doi.org/10.1152/ajpregu.00240.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noakes M, Foster PR, Keogh JB, James AP, Mamo JC, Clifton PM Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr Metabol. 2006;3. https://doi.org/10.1186/1743-7075-3-7.

  45. O’Brien KD, Brehm BJ, Seeley RJ, Bean J, Wener MH, Daniels S, et al. Diet-induced weight loss is associated with decreases in plasma serum amyloid a and C-reactive protein independent of dietary macronutrient composition in obese subjects. J Clin Endocrinol Metab. 2005;90:2244–9. https://doi.org/10.1210/jc.2004-1011.

    Article  CAS  PubMed  Google Scholar 

  46. Perissiou M, Borkoles E, Kobayashi K, Polman R. The Effect of an 8 Week Prescribed Exercise and Low-Carbohydrate Diet on Cardiorespiratory Fitness, Body Composition and Cardiometabolic Risk Factors in Obese Individuals: A Randomised Controlled Trial. Nutrients. 2020;12, https://doi.org/10.3390/nu12020482.

  47. Phillips SA, Jurva JW, Syed AQ, Syed AQ, Kulinski JP, Pleuss J, et al. Benefit of low-fat over low-carbohydrate diet on endothelial health in obesity. Hypertension. 2008;51:376–82. https://doi.org/10.1161/HYPERTENSIONAHA.107.101824.

    Article  CAS  PubMed  Google Scholar 

  48. Retterstøl K, Svendsen M, Narverud I, Holven KB. Effect of low carbohydrate high fat diet on LDL cholesterol and gene expression in normal-weight, young adults: A randomized controlled study. Atherosclerosis. 2018;279:52–61. https://doi.org/10.1016/j.atherosclerosis.2018.10.013.

    Article  CAS  PubMed  Google Scholar 

  49. Ruth MR, Port AM, Shah M, Bourland AC, Istfan NW, Nelson KP, et al. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism. 2013;62:1779–87. https://doi.org/10.1016/j.metabol.2013.07.006.

    Article  CAS  PubMed  Google Scholar 

  50. Seshadri P, Iqbal N, Stern L, Williams M, Chicano KL, Daily DA, et al. A randomized study comparing the effects of a low-carbohydrate diet and a conventional diet on lipoprotein subfractions and C-reactive protein levels in patients with severe obesity. Am J Med. 2004;117:398–405. https://doi.org/10.1016/j.amjmed.2004.04.009.

    Article  CAS  PubMed  Google Scholar 

  51. Sharman MJ, Volek JS. Weight loss leads to reductions in inflammatory biomarkers after a very-low-carbohydrate diet and a low-fat diet in overweight men. Clin Sci. 2004;107:365–9. https://doi.org/10.1042/cs20040111.

    Article  CAS  Google Scholar 

  52. Strath LJ, Jones CD, George AP, Lukens SL, Morrison SA, Soleymani T, et al. The effect of low-carbohydrate and low-fat diets on pain in individuals with knee osteoarthritis. Pain Med. 2020;21:150–60. https://doi.org/10.1093/pm/pnz022.

    Article  PubMed  Google Scholar 

  53. Tay J, Brinkworth GD, Noakes M, Keogh J, Clifton PM. Metabolic effects of weight loss on a very-low-carbohydrate diet compared with an isocaloric high-carbohydrate diet in abdominally obese subjects. J Am Coll Cardiol. 2008;51:59–67. https://doi.org/10.1016/j.jacc.2007.08.050.

    Article  CAS  PubMed  Google Scholar 

  54. Volek JS, Sharman MJ, Gómez AL, Scheett TP, Kraemer WJ. An isoenergetic very low carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial pipemic responses compared with a low fat diet in normal weight, normolipidemic women. J Nutr. 2003;133:2756–61. https://doi.org/10.1093/jn/133.9.2756.

    Article  CAS  PubMed  Google Scholar 

  55. Zainordin NA, Eddy Warman NA, Mohamad AF, Abu Yazid FA, Ismail NH, Chen XW, et al. Safety and efficacy of very low carbohydrate diet in patients with diabetic kidney disease-A randomized controlled trial. PLoS One. 2021;16:e0258507 https://doi.org/10.1371/journal.pone.0258507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Asle Mohammadi Zadeh M, Kargarfard M, Marandi SM, Habibi A. Diets along with interval training regimes improves inflammatory & anti-inflammatory condition in obesity with type 2 diabetes subjects. J Diabetes Metabol Disorders. 2018;17:253–67. https://doi.org/10.1007/s40200-018-0368-0.

    Article  CAS  Google Scholar 

  57. Davis NJ, Crandall JP, Gajavelli S, Berman JW, Tomuta N, Wylie-Rosett J, et al. Differential effects of low-carbohydrate and low-fat diets on inflammation and endothelial function in diabetes. J Diabetes Compl. 2011;25:371–6. https://doi.org/10.1016/j.jdiacomp.2011.08.001.

    Article  Google Scholar 

  58. Falkenhain K, Locke SR, Lowe DA, Reitsma NJ, Lee T, Singer J, et al. Keyto app and device versus WW app on weight loss and metabolic risk in adults with overweight or obesity: A randomized trial. Obesity. 2021;29:1606–14. https://doi.org/10.1002/oby.23242.

    Article  CAS  PubMed  Google Scholar 

  59. Haufe S, Engeli S, Kast P, Böhnke J, Utz W, Haas V, et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology. 2011;53:1504–14. https://doi.org/10.1002/hep.24242.

    Article  CAS  PubMed  Google Scholar 

  60. Jonasson L, Guldbrand H, Lundberg AK, Nystrom FH. Advice to follow a low-carbohydrate diet has a favourable impact on low-grade inflammation in type 2 diabetes compared with advice to follow a low-fat diet. Ann Med. 2014;46:182–7. https://doi.org/10.3109/07853890.2014.894286.

    Article  CAS  PubMed  Google Scholar 

  61. Kempf K, Röhling M, Banzer W, Braumann KM, Halle M, McCarthy D et al. High-protein, low-glycaemic meal replacement decreases fasting insulin and inflammation markers—a 12-month subanalysis of the acoorh trial. Nutrients. 2021;13. https://doi.org/10.3390/nu13051433.

  62. Rankin JW, Turpyn AD. Low carbohydrate, high fat diet increases C-reactive protein during weight loss. J Am Coll Nutr. 2007;26:163–9. https://doi.org/10.1080/07315724.2007.10719598.

    Article  CAS  PubMed  Google Scholar 

  63. Stoernell CK, Tangney CC, Rockway SW. Short-term changes in lipoprotein subclasses and C-reactive protein levels of hypertriglyceridemic adults on low-carbohydrate and low-fat diets. Nutr Res. 2008;28:443–9. https://doi.org/10.1016/j.nutres.2008.03.013.

    Article  CAS  PubMed  Google Scholar 

  64. Brinkworth GD, Noakes M, Keogh JB, Luscombe ND, Wittert GA, Clifton PM. Long-term effects of a high-protein, low-carbohydrate diet on weight control and cardiovascular risk markers in obese hyperinsulinemic subjects. Int J Obes Relat Metab Disord. 2004;28:661–70. https://doi.org/10.1038/sj.ijo.0802617.

    Article  CAS  PubMed  Google Scholar 

  65. Brinkworth GD, Noakes M, Parker B, Foster P, Clifton PM. Long-term effects of advice to consume a high-protein, low-fat diet, rather than a conventional weight-loss diet, in obese adults with Type 2 diabetes: one-year follow-up of a randomised trial. Diabetologia. 2004;47:1677–86. https://doi.org/10.1007/s00125-004-1511-7.

    Article  CAS  PubMed  Google Scholar 

  66. de la Rubia Ortí JE, Platero JL, Yang IH, Ceron JJ, Tvarijonaviciute A, Sabater PS et al. Possible Role of Butyrylcholinesterase in Fat Loss and Decreases in Inflammatory Levels in Patients with Multiple Sclerosis after Treatment with Epigallocatechin Gallate and Coconut Oil: A Pilot Study. Nutrients. 2021;13; https://doi.org/10.3390/nu13093230.

  67. de Luis DA, Aller R, Izaola O, Sagrado MG, Conde R. Influence of Ala54Thr polymorphism of fatty acid-binding protein 2 on weight loss and insulin levels secondary to two hypocaloric diets: A randomized clinical trial. Diabetes Res Clin Pract. 2008;82:113–8. https://doi.org/10.1016/j.diabres.2008.07.005.

    Article  CAS  PubMed  Google Scholar 

  68. De Luis DA, Izaola O, Aller R, De La Fuente B, Bachiller R, Romero E. Effects of a high-protein/low carbohydrate versus a standard hypocaloric diet on adipocytokine levels and insulin resistance in obese patients along 9 months. J Diabetes Complications. 2015;29:950–4. https://doi.org/10.1016/j.jdiacomp.2015.06.002.

    Article  PubMed  Google Scholar 

  69. Deluis DA, Sagrado MG, Aller R, Izaola O, Conde R. Effects of C358A missense polymorphism of the degrading enzyme fatty acid amide hydrolase on weight loss, adipocytokines, and insulin resistance after 2 hypocaloric diets. Metabolism. 2010;59:1387–92. https://doi.org/10.1016/j.metabol.2009.12.029.

    Article  CAS  PubMed  Google Scholar 

  70. Flechtner-Mors M, Boehm BO, Wittmann R, Thoma U, Ditschuneit HH. Enhanced weight loss with protein-enriched meal replacements in subjects with the metabolic syndrome. Diabetes Metabol Res Rev. 2010;26:393–405. https://doi.org/10.1002/dmrr.1097.

    Article  CAS  Google Scholar 

  71. Gower BA, Goss AM. A lower-carbohydrate, higher-fat diet reduces abdominal and intermuscular fat and increases insulin sensitivity in adults at risk of type 2 diabetes. J Nutr. 2015;145:177S–183S. https://doi.org/10.3945/jn.114.195065.

    Article  CAS  PubMed  Google Scholar 

  72. Heggen E, Klemsdal TO, Haugen F, Holme I, Tonstad S. Effect of a Low-Fat Versus a Low-Gycemic-Load Diet on Inflammatory Biomarker and Adipokine Concentrations. Metabol Syndr Rel Disord. 2012;10:437–42. https://doi.org/10.1089/met.2012.0012.

    Article  CAS  Google Scholar 

  73. Kani AH, Alavian SM, Esmaillzadeh A, Adibi P, Azadbakht L. Effects of a novel therapeutic diet on liver enzymes and coagulating factors in patients with non-alcoholic fatty liver disease: A parallel randomized trial. Nutrition. 2014;30:814–21. https://doi.org/10.1016/j.nut.2013.11.008.

    Article  CAS  PubMed  Google Scholar 

  74. Le T, Flatt SW, Natarajan L, Pakiz B, Quintana EL, Heath DD et al. Effects of diet composition and insulin resistance status on plasma lipid levels in a weight loss intervention in women. J Am Heart Assoc. 2016;5. https://doi.org/10.1161/JAHA.115.002771.

  75. Pittas AG, Roberts SB, Das SK, Gilhooly CH, Saltzman E, Golden J, et al. The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss. Obesity. 2006;14:2200–9. https://doi.org/10.1038/oby.2006.258.

    Article  CAS  PubMed  Google Scholar 

  76. Primo D, Izaola O, de Luis D. Effects of a high protein/low carbohydrate low-calorie diet versus a standard low-calorie diet on anthropometric parameters and cardiovascular risk factors, role of polymorphism rs3123554 in the cannabinoid receptor gene type 2 (CB2R). Endocrinol Diabetes Nutr. 2020;67:446–53. https://doi.org/10.1016/j.endinu.2019.09.010.

    Article  Google Scholar 

  77. Rock CL, Flatt SW, Pakiz B, Quintana EL, Heath DD, Rana BK, et al. Effects of diet composition on weight loss, metabolic factors and biomarkers in a 1-year weight loss intervention in obese women examined by baseline insulin resistance status. Metabolism. 2016;65:1605–13. https://doi.org/10.1016/j.metabol.2016.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Skytte MJ, Samkani A, Astrup A, Larsen TM, Frystyk J, Poulsen HE, et al. Effects of a highly controlled carbohydrate-reduced high-protein diet on markers of oxidatively generated nucleic acid modifications and inflammation in weight stable participants with type 2 diabetes; a randomized controlled trial. Scand J Clin Lab Invest. 2020;80:401–7. https://doi.org/10.1080/00365513.2020.1759137.

    Article  CAS  PubMed  Google Scholar 

  79. Strychar I, Cohn JS, Renier G, Rivard M, Aris-Jilwan N, Beauregard H, et al. Effects of a diet higher in carbohydrate/lower in fat versus lower in carbohydrate/higher in monounsaturated fat on postmeal triglyceride concentrations and other cardiovascular risk factors in type 1 diabetes. Diabetes Care. 2009;32:1597–9. https://doi.org/10.2337/dc08-2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thomson CA, Stopeck AT, Bea JW, Cussler E, Nardi E, Frey G, et al. Changes in body weight and metabolic indexes in overweight breast cancer survivors enrolled in a randomized trial of low-fat vs. reduced carbohydrate diets. Nutr Cancer. 2010;62:1142–52. https://doi.org/10.1080/01635581.2010.513803.

    Article  CAS  PubMed  Google Scholar 

  81. Seshadri P, Samaha FF, Stern L, Ahima RS, Daily D, Iqbal N. Adipocytokine changes caused by low-carbohydrate compared to conventional diets in obesity. Metab Syndr Rel Disorders. 2005;3:66–74. https://doi.org/10.1089/met.2005.3.66.

    Article  CAS  Google Scholar 

  82. Santos HO, Lavie CJ. Weight loss and its influence on high-density lipoprotein cholesterol (HDL-C) concentrations: A noble clinical hesitation. Clin Nutr ESPEN. 2021;42:90–92.

    Article  PubMed  Google Scholar 

  83. Santos HO. Intermittent fasting and fat mass: What is the clinical magnitude? Obesities. 2022;2:1–7.

    Article  Google Scholar 

  84. Santos HO, Macedo RC. Impact of intermittent fasting on the lipid profile: Assessment associated with diet and weight loss. Clin Nutr ESPEN. 2018;24:14–21.

    Article  PubMed  Google Scholar 

  85. Hoffmann K, Kopciuch D, Michalak M, Bryl W, Kus K, Marzec K, et al. Adherence of Obese Patients from Poland and Germany and Its Impact on the Effectiveness of Morbid Obesity Treatment. Nutrients. 2022;14:3880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018;128:1538–50.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kelly T, Unwin D, Finucane F. Low-Carbohydrate Diets in the Management of Obesity and Type 2 Diabetes: A Review from Clinicians Using the Approach in Practice. Int J Environ Res Public Health. 2020;17:2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Oh R, Gilani B, Uppaluri KR. Low Carbohydrate Diet. Treasure Island (FL): StatPearls Publishing; 2022.

  89. Smidowicz A, Regula J. Effect of nutritional status and dietary patterns on human serum C-reactive protein and interleukin-6 concentrations. Adv Nutr. 2015;6:738–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goldenberg JZ, Day A, Brinkworth GD, Sato J, Yamada S, Jönsson T et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ. 2021; 13:372:m4743, https://pubmed.ncbi.nlm.nih.gov/33441384/.

  91. Avalos Y, Kerr B, Maliqueo M, Dorfman M. Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity. J Neuroendocrinol. 2018;30:e12598 https://doi.org/10.1111/jne.12598.

    Article  CAS  PubMed  Google Scholar 

  92. Tosti V, Bertozzi B, Fontana L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol Ser. A Biol Sci Med Sci. 2018;73:318–26. https://doi.org/10.1093/gerona/glx227.

    Article  CAS  Google Scholar 

  93. Pirkola J, Vääräsmäki M, Ala-Korpela M, Bloigu A, Canoy D, Hartikainen A-L, et al. Low-grade, systemic inflammation in adolescents: association with early-life factors, gender, and lifestyle. Am J Epidemiol. 2009;171:72–82.

    Article  PubMed  Google Scholar 

  94. Stenvinkel P, Pecoits-Filho R, Lindholm B; DialGene Consortium. Gene polymorphism association studies in dialysis: the nutrition-inflammation axis. Semin Dial. 2005. 18:322–30

  95. Tilg H, Moschen AR. Food, immunity, and the microbiome. Gastroenterology. 2015;148:1107–19.

    Article  PubMed  Google Scholar 

  96. Qi X, Chiavaroli L, Lee D, Ayoub-Charette S, Khan TA, Au-Yeung F, et al. Effect of Important Food Sources of Fructose-Containing Sugars on Inflammatory Biomarkers: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Nutrients. 2022;14:3986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Middleton KR, Anton SD, Perri MG. Long-term adherence to health behavior change. Am J Lifestyle Med. 2013;7:395–404.

    Article  PubMed  Google Scholar 

  98. Bravata DM, Sanders L, Huang J, Krumholz HM, Olkin I, Gardner CD, et al. Efficacy and Safety of Low-Carbohydrate DietsA Systematic Review. JAMA. 2003;289:1837–50. https://doi.org/10.1001/jama.289.14.1837.

    Article  CAS  PubMed  Google Scholar 

  99. Volek JS, Sharman MJ, Gomez AL, Scheett TP, Kraemer WJ. An isoenergetic very low carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial lipemic responses compared with a low fat diet in normal weight, normolipidemic women. J Nutr. 2003;133:2756–61. https://doi.org/10.1093/jn/133.9.2756.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This systematic review and meta-analysis did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Contributions

FK, MK, and MHS conceived and designed the study and extracted data. FK analyzed the data and completed the initial draft of the results. FK and MM drafted the initial manuscript. HS and SR revised the manuscript. FK, MM, MK, MHS, SR, and HS read and approved the final manuscript.

Corresponding author

Correspondence to Heitor O. Santos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazeminasab, F., Miraghajani, M., Khalafi, M. et al. Effects of low-carbohydrate diets, with and without caloric restriction, on inflammatory markers in adults: a systematic review and meta-analysis of randomized clinical trials. Eur J Clin Nutr (2024). https://doi.org/10.1038/s41430-024-01431-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41430-024-01431-x

Search

Quick links