Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dichotomous effect of dietary fiber in pediatrics: a narrative review of the health benefits and tolerance of fiber

Abstract

Dietary fibers are associated with favorable gastrointestinal, immune, and metabolic health outcomes when consumed at sufficient levels. Despite the well-described benefits of dietary fibers, children and adolescents continue to fall short of daily recommended levels. This gap in fiber intake (i.e., “fiber gap”) might increase the risk of developing early-onset pediatric obesity and obesity-related comorbidities such as type 2 diabetes mellitus into adulthood. The structure-dependent physicochemical properties of dietary fiber are diverse. Differences in solubility, viscosity, water-holding capacity, binding capability, bulking effect, and fermentability influence the physiological effects of dietary fibers that aid in regulating appetite, glycemic and lipidemic responses, and inflammation. Of growing interest is the fermentation of fibers by the gut microbiota, which yields both beneficial and less favorable end-products such as short-chain fatty acids (e.g., acetate, propionate, and butyrate) that impart metabolic and immunomodulatory properties, and gases (e.g., hydrogen, carbon dioxide, and methane) that cause gastrointestinal symptoms, respectively. This narrative review summarizes (1) the implications of fibers on the gut microbiota and the pathophysiology of pediatric obesity, (2) some factors that potentially contribute to the fiber gap with an emphasis on undesirable gastrointestinal symptoms, (3) some methods to alleviate fiber-induced symptoms, and (4) the therapeutic potential of whole foods and commonly marketed fiber supplements for improved health in pediatric obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic, inflammatory, and symptom responses to dietary fiber fermentation.
Fig. 2: Mean total dietary fiber intake of children and adolescents based on age and sex in the United States and Canada.
Fig. 3: Approaches to attenuate gastrointestinal symptoms associated with high-fiber intake.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Collaboration NCDRF. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–42.

    Article  Google Scholar 

  2. Mattsson N, Ronnemaa T, Juonala M, Viikari JS, Raitakari OT. Childhood predictors of the metabolic syndrome in adulthood. The Cardiovascular Risk in Young Finns Study. Ann Med. 2008;40:542–52.

    Article  CAS  PubMed  Google Scholar 

  3. Matson KL, Fallon RM. Treatment of obesity in children and adolescents. J Pediatr Pharm Ther. 2012;17:45–57.

    Google Scholar 

  4. Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, et al. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 2016;23:591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar J, Rani K, Datt C. Molecular link between dietary fibre, gut microbiota and health. Mol Biol Rep. 2020;47:6229–37.

    Article  CAS  PubMed  Google Scholar 

  6. Downs SM, Marshall D, Ng C, Willows ND. Central adiposity and associated lifestyle factors in Cree children. Appl Physiol Nutr Metab. 2008;33:476–82.

    Article  PubMed  Google Scholar 

  7. Al-Hazzaa HM, Abahussain NA, Al-Sobayel HI, Qahwaji DM, Musaiger AO. Lifestyle factors associated with overweight and obesity among Saudi adolescents. BMC Public Health. 2012;12:354.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alimentarius C. Guidelines on nutrition labelling CAC/GL 2-1985 as last amended 2010. Rome: Joint FAO/WHO Food Standards Programme, Secretariat of the Codex Alimentarius Commission, FAO; 2010.

    Google Scholar 

  9. Institute of Medicine FaNB, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, & Panel on the Definition of Dietary Fiber. Dietary Reference Intakes Proposed Definition of Dietary Fiber: a report of the Panel on the Definition of Dietary Fiber and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes/Food and Nutrition Board, Institute of Medicine. Washington (DC): National Academies Press; 2001.

  10. Cronin P, Joyce SA, O’Toole PW, O’Connor EM. Dietary Fibre Modulates the Gut Microbiota. Nutrients. 2021;13:1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deehan EC, Duar RM, Armet AM, Perez-Munoz ME, Jin M, Walter J. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiol Spectr. 2017;5:1–24.

    Article  CAS  Google Scholar 

  12. Dai FJ, Chau CF. Classification and regulatory perspectives of dietary fiber. J Food Drug Anal. 2017;25:37–42.

    Article  CAS  PubMed  Google Scholar 

  13. Jones JM. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr J. 2014;13:34.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fatahi S, Sayyari AA, Salehi M, Safa M, Sohouli M, Shidfar F, et al. The effects of chitosan supplementation on anthropometric indicators of obesity, lipid and glycemic profiles, and appetite-regulated hormones in adolescents with overweight or obesity: a randomized, double-blind clinical trial. BMC Pediatr. 2022;22:527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vahdat M, Hosseini SA, Khalatbari Mohseni G, Heshmati J, Rahimlou M. Effects of resistant starch interventions on circulating inflammatory biomarkers: a systematic review and meta-analysis of randomized controlled trials. Nutr J. 2020;19:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Perez-Reytor D, Puebla C, Karahanian E, Garcia K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front Physiol. 2021;12:650313.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guérin-Deremaux L, Pochat M, Reifer C, Wils D, Cho S, Miller LE Dose–response impact of a soluble fiber, NUTRIOSE®, on energy intake, body weight and body fat in humans. Glob Epidemic Obes. 2013;1:1–8.

  18. Armstrong H, Mander I, Zhang Z, Armstrong D, Wine E. Not All Fibers Are Born Equal; Variable Response to Dietary Fiber Subtypes in IBD. Front Pediatr. 2020;8:620189.

    Article  PubMed  Google Scholar 

  19. Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 2010;5:e15046.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Kok CR, Rose D, Hutkins R. Predicting Personalized Responses to Dietary Fiber Interventions: Opportunities for Modulation of the Gut Microbiome to Improve Health. Annu Rev Food Sci Technol. 2023;14:157–82.

    Article  CAS  PubMed  Google Scholar 

  21. Makki K, Deehan EC, Walter J, Backhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe. 2018;23:705–15.

    Article  CAS  PubMed  Google Scholar 

  22. Zhai X, Lin D, Zhao Y, Li W, Yang X. Effects of Dietary Fiber Supplementation on Fatty Acid Metabolism and Intestinal Microbiota Diversity in C57BL/6J Mice Fed with a High-Fat Diet. J Agric Food Chem. 2018;66:12706–18.

    Article  CAS  PubMed  Google Scholar 

  23. Xie L, Alam MJ, Marques FZ, Mackay CR. A major mechanism for immunomodulation: Dietary fibres and acid metabolites. Semin Immunol. 2023;66:101737.

    Article  CAS  PubMed  Google Scholar 

  24. Vinelli V, Biscotti P, Martini D, Del Bo C, Marino M, Merono T, et al. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients. 2022;14:2559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ojo O, Ojo OO, Zand N, Wang X. The Effect of Dietary Fibre on Gut Microbiota, Lipid Profile, and Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients. 2021;13:1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nicolucci AC, Hume MP, Martinez I, Mayengbam S, Walter J, Reimer RA. Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or With Obesity. Gastroenterology. 2017;153:711–22.

    Article  PubMed  Google Scholar 

  27. Lohner S, Jakobik V, Mihalyi K, Soldi S, Vasileiadis S, Theis S, et al. Inulin-Type Fructan Supplementation of 3- to 6-Year-Old Children Is Associated with Higher Fecal Bifidobacterium Concentrations and Fewer Febrile Episodes Requiring Medical Attention. J Nutr. 2018;148:1300–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Francois IE, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Hamer H, et al. Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J Pediatr Gastroenterol Nutr. 2014;58:647–53.

    Article  CAS  PubMed  Google Scholar 

  29. Ho J, Nicolucci AC, Virtanen H, Schick A, Meddings J, Reimer RA, et al. Effect of Prebiotic on Microbiota, Intestinal Permeability, and Glycemic Control in Children With Type 1 Diabetes. J Clin Endocrinol Metab. 2019;104:4427–40.

    Article  PubMed  Google Scholar 

  30. Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, et al. Soluble Corn Fiber Increases Calcium Absorption Associated with Shifts in the Gut Microbiome: A Randomized Dose-Response Trial in Free-Living Pubertal Females. J Nutr. 2016;146:1298–306.

    Article  CAS  PubMed  Google Scholar 

  31. Kaczmarek JL, Liu X, Charron CS, Novotny JA, Jeffery EH, Seifried HE, et al. Broccoli consumption affects the human gastrointestinal microbiota. J Nutr Biochem. 2019;63:27–34.

    Article  CAS  PubMed  Google Scholar 

  32. Henning SM, Yang J, Woo SL, Lee RP, Huang J, Rasmusen A, et al. Hass Avocado Inclusion in a Weight-Loss Diet Supported Weight Loss and Altered Gut Microbiota: A 12-Week Randomized, Parallel-Controlled Trial. Curr Dev Nutr. 2019;3:nzz068.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sette S, D’Addezio L, Piccinelli R, Hopkins S, Le Donne C, Ferrari M, et al. Intakes of whole grain in an Italian sample of children, adolescents and adults. Eur J Nutr. 2017;56:521–33.

    Article  CAS  PubMed  Google Scholar 

  34. Marinangeli CPF, Harding SV, Zafron M, Rideout TC. A systematic review of the effect of dietary pulses on microbial populations inhabiting the human gut. Benef Microbes. 2020;11:457–68.

    Article  CAS  PubMed  Google Scholar 

  35. Ukhanova M, Wang X, Baer DJ, Novotny JA, Fredborg M, Mai V. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. Br J Nutr. 2014;111:2146–52.

    Article  CAS  PubMed  Google Scholar 

  36. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393:434–45.

    Article  CAS  PubMed  Google Scholar 

  37. Livesey G. Tolerance of low-digestible carbohydrates: a general view. Br J Nutr. 2001;85:S7–16.

    Article  CAS  PubMed  Google Scholar 

  38. Threapleton DE, Greenwood DC, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu B, Fu J, Qiao Y, Cao J, Deehan EC, Li Z, et al. Higher intake of microbiota-accessible carbohydrates and improved cardiometabolic risk factors: a meta-analysis and umbrella review of dietary management in patients with type 2 diabetes. Am J Clin Nutr. 2021;113:1515–30.

    Article  CAS  PubMed  Google Scholar 

  40. Medicine Io. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press; 2005. p. 1358.

    Google Scholar 

  41. Atkinson SA, Koletzko B. Determining life-stage groups and extrapolating nutrient intake values (NIVs). Food Nutr Bull. 2007;28:S61–76.

    Article  PubMed  Google Scholar 

  42. Deehan EC, Walter J. The Fiber Gap and the Disappearing Gut Microbiome: Implications for Human Nutrition. Trends Endocrinol Metab. 2016;27:239–42.

    Article  CAS  PubMed  Google Scholar 

  43. King DE, Mainous AG 3rd, Lambourne CA. Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet. 2012;112:642–8.

    Article  PubMed  Google Scholar 

  44. Deehan EC, Yang C, Perez-Munoz ME, Nguyen NK, Cheng CC, Triador L, et al. Precision Microbiome Modulation with Discrete Dietary Fiber Structures Directs Short-Chain Fatty Acid Production. Cell Host Microbe. 2020;27:389–404.e6.

    Article  CAS  PubMed  Google Scholar 

  45. Salvatore S, Battigaglia MS, Murone E, Dozio E, Pensabene L, Agosti M. Dietary Fibers in Healthy Children and in Pediatric Gastrointestinal Disorders: A Practical Guide. Nutrients. 2023;15:2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grabitske HA, Slavin JL. Gastrointestinal effects of low-digestible carbohydrates. Crit Rev Food Sci Nutr. 2009;49:327–60.

    Article  CAS  PubMed  Google Scholar 

  47. Glanz K, Bishop DB. The role of behavioral science theory in development and implementation of public health interventions. Annu Rev Public Health. 2010;31:399–418.

    Article  PubMed  Google Scholar 

  48. Waddell IS, Orfila C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Crit Rev Food Sci Nutr. 2023;63:8752–67.

    Article  CAS  PubMed  Google Scholar 

  49. McRorie JW Jr., McKeown NM. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J Acad Nutr Diet. 2017;117:251–64.

    Article  PubMed  Google Scholar 

  50. Capuano E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit Rev Food Sci Nutr. 2017;57:3543–64.

    Article  CAS  PubMed  Google Scholar 

  51. Williams BA, Mikkelsen D, Flanagan BM, Gidley MJ. “Dietary fibre”: moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J Anim Sci Biotechnol. 2019;10:45.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dhingra D, Michael M, Rajput H, Patil RT. Dietary fibre in foods: a review. J Food Sci Technol. 2012;49:255–66.

    Article  CAS  PubMed  Google Scholar 

  53. Chutkan R, Fahey G, Wright WL, McRorie J. Viscous versus nonviscous soluble fiber supplements: mechanisms and evidence for fiber-specific health benefits. J Am Acad Nurse Pr. 2012;24:476–87.

    Article  Google Scholar 

  54. Giuntini EB, Sarda FAH, de Menezes EW. The Effects of Soluble Dietary Fibers on Glycemic Response: An Overview and Futures Perspectives. Foods. 2022;11:3934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thompson SV, Hannon BA, An R, Holscher HD. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2017;106:1514–28.

    Article  CAS  PubMed  Google Scholar 

  56. Abutair AS, Naser IA, Hamed AT. Soluble fibers from psyllium improve glycemic response and body weight among diabetes type 2 patients (randomized control trial). Nutr J. 2016;15:86.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3:289–306.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kong D, Schipper L, van Dijk G. Distinct Effects of Short Chain Fatty Acids on Host Energy Balance and Fuel Homeostasis With Focus on Route of Administration and Host Species. Front Neurosci. 2021;15:755845.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Saleri R, Borghetti P, Ravanetti F, Cavalli V, Ferrari L, De Angelis E, et al. Effects of different short-chain fatty acids (SCFA) on gene expression of proteins involved in barrier function in IPEC-J2. Porcine Health Manag. 2022;8:21.

    Article  PubMed  PubMed Central  Google Scholar 

  61. van Trijp MPH, Rosch C, An R, Keshtkar S, Logtenberg MJ, Hermes GDA, et al. Fermentation Kinetics of Selected Dietary Fibers by Human Small Intestinal Microbiota Depend on the Type of Fiber and Subject. Mol Nutr Food Res. 2020;64:e2000455.

    Article  PubMed  Google Scholar 

  62. Payling KF, Loveday SM, Sims I, Roy N, McNabb W, The effects of carbohydrate structure on the composition and functionality of the human gut microbiota, Trends Food Sci Technol. 2020;97:233–48.

    Article  CAS  Google Scholar 

  63. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012;6:1535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smith NW, Shorten PR, Altermann EH, Roy NC, McNabb WC. Hydrogen cross-feeders of the human gastrointestinal tract. Gut Microbes. 2019;10:270–88.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–6.

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Solito A, Bozzi Cionci N, Calgaro M, Caputo M, Vannini L, Hasballa I, et al. Supplementation with Bifidobacterium breve BR03 and B632 strains improved insulin sensitivity in children and adolescents with obesity in a cross-over, randomized double-blind placebo-controlled trial. Clin Nutr. 2021;40:4585–94.

    Article  CAS  PubMed  Google Scholar 

  67. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64:1744–54.

    Article  CAS  PubMed  Google Scholar 

  68. Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19:257–65.

    Article  CAS  PubMed  Google Scholar 

  69. Morel FB, Dai Q, Ni J, Thomas D, Parnet P, Fanca-Berthon P. alpha-Galacto-oligosaccharides Dose-Dependently Reduce Appetite and Decrease Inflammation in Overweight Adults. J Nutr. 2015;145:2052–9.

    Article  CAS  PubMed  Google Scholar 

  70. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

    Article  CAS  PubMed  Google Scholar 

  72. Camilleri M, Lyle BJ, Madsen KL, Sonnenburg J, Verbeke K, Wu GD. Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. Am J Physiol Gastrointest Liver Physiol. 2019;317:G17–G39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee YS, Wollam J, Olefsky JM. An Integrated View of Immunometabolism. Cell. 2018;172:22–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95:2409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Puertollano E, Kolida S, Yaqoob P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Curr Opin Clin Nutr Metab Care. 2014;17:139–44.

    Article  CAS  PubMed  Google Scholar 

  77. Ikeda T, Nishida A, Yamano M, Kimura I. Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharm Ther. 2022;239:108273.

    Article  CAS  Google Scholar 

  78. Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol. 2023;14:1161521.

    Article  Google Scholar 

  79. He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci. 2020;21:6356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Silva A, Bloom SR. Gut Hormones and Appetite Control: A Focus on PYY and GLP-1 as Therapeutic Targets in Obesity. Gut Liver. 2012;6:10–20.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Barrera JG, Sandoval DA, D’Alessio DA, Seeley RJ. GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat Rev Endocrinol. 2011;7:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fujikawa T, Berglund ED, Patel VR, Ramadori G, Vianna CR, Vong L, et al. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin. Cell Metab. 2013;18:431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sakakibara S, Yamauchi T, Oshima Y, Tsukamoto Y, Kadowaki T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem Biophys Res Commun. 2006;344:597–604.

    Article  CAS  PubMed  Google Scholar 

  84. Kondo T, Kishi M, Fushimi T, Kaga T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J Agric Food Chem. 2009;57:5982–6.

    Article  CAS  PubMed  Google Scholar 

  85. Zambell KL, Fitch MD, Fleming SE. Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells. J Nutr. 2003;133:3509–15.

    Article  CAS  PubMed  Google Scholar 

  86. Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010;1801:1175–83.

    Article  CAS  PubMed  Google Scholar 

  87. Suokas A, Kupari M, Heikkila J, Lindros K, Ylikahri R. Acute cardiovascular and metabolic effects of acetate in men. Alcohol Clin Exp Res. 1988;12:52–8.

    Article  CAS  PubMed  Google Scholar 

  88. Cherta-Murillo A, Pugh JE, Alaraj-Alshehhi S, Hajjar D, Chambers ES, Frost GS. The effects of SCFAs on glycemic control in humans: a systematic review and meta-analysis. Am J Clin Nutr. 2022;116:335–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jang HR, Lee HY. Mechanisms linking gut microbial metabolites to insulin resistance. World J Diabetes. 2021;12:730–44.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Edwards CA, Xie C, Garcia AL. Dietary fibre and health in children and adolescents. Proc Nutr Soc. 2015;74:292–302.

    Article  CAS  PubMed  Google Scholar 

  91. Kranz S, Brauchla M, Slavin JL, Miller KB. What do we know about dietary fiber intake in children and health? The effects of fiber intake on constipation, obesity, and diabetes in children. Adv Nutr. 2012;3:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cummings JH, Macfarlane GT, Englyst HN. Prebiotic digestion and fermentation. Am J Clin Nutr. 2001;73:415S–20S.

    Article  CAS  PubMed  Google Scholar 

  93. Bosaeus I. Fibre effects on intestinal functions (diarrhoea, constipation and irritable bowel syndrome). Clin Nutr Suppl. 2004;1:33–8.

    Article  Google Scholar 

  94. Kalantar-Zadeh K, Berean KJ, Burgell RE, Muir JG, Gibson PR. Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol. 2019;16:733–47.

    Article  CAS  PubMed  Google Scholar 

  95. Muller M, Hermes GDA, Canfora EE, Smidt H, Masclee AAM, Zoetendal EG, et al. Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. Am J Physiol Gastrointest Liver Physiol. 2020;318:G361–G9.

    Article  PubMed  Google Scholar 

  96. Asnicar F, Leeming ER, Dimidi E, Mazidi M, Franks PW, Al Khatib H, et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut. 2021;70:1665–74.

    Article  CAS  PubMed  Google Scholar 

  97. Muller M, Hermes GDA, Emanuel EC, Holst JJ, Zoetendal EG, Smidt H, et al. Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: a randomized controlled trial in healthy adults with a slow gut transit. Gut Microbes. 2020;12:1704141.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hernot DC, Boileau TW, Bauer LL, Middelbos IS, Murphy MR, Swanson KS, et al. In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose. J Agric Food Chem. 2009;57:1354–61.

    Article  CAS  PubMed  Google Scholar 

  99. Dahl WJ, Stewart ML. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J Acad Nutr Diet. 2015;115:1861–70.

    Article  PubMed  Google Scholar 

  100. Al-Biltagi M, El Amrousy D, El Ashry H, Maher S, Mohammed MA, Hasan S. Effects of adherence to the Mediterranean diet in children and adolescents with irritable bowel syndrome. World J Clin Pediatr. 2022;11:330–40.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Strisciuglio C, Cenni S, Serra MR, Dolce P, Kolacek S, Sila S, et al. Diet and Pediatric Functional Gastrointestinal Disorders in Mediterranean Countries. Nutrients. 2022;14:2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Agakidis C, Kotzakioulafi E, Petridis D, Apostolidou K, Karagiozoglou-Lampoudi T. Mediterranean Diet Adherence is Associated with Lower Prevalence of Functional Gastrointestinal Disorders in Children and Adolescents. Nutrients. 2019;11:1283.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hojsak I, Benninga MA, Hauser B, Kansu A, Kelly VB, Stephen AM, et al. Benefits of dietary fibre for children in health and disease. Arch Dis Child. 2022;107:973–9.

    Article  PubMed  Google Scholar 

  104. Ak N, Koo HC, Hamid Jan JM, Mohd Nasir MT, Tan SY, Appukutty M, et al. Whole Grain Intakes in the Diets Of Malaysian Children and Adolescents–Findings from the MyBreakfast Study. PLoS One. 2015;10:e0138247.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Miller KB. Review of whole grain and dietary fiber recommendations and intake levels in different countries. Nutr Rev. 2020;78:29–36.

    Article  PubMed  Google Scholar 

  106. Ionita-Mindrican CB, Ziani K, Mititelu M, Oprea E, Neacsu SM, Morosan E, et al. Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review. Nutrients. 2022;14:2641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dietary Reference Intakes: Nutrient Recommendations and Databases. National Academies Press. 2005. Available from: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx.

  108. Dikeman CL, Murphy MR, Fahey GCJ. Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J Nutr. 2006;136:913–9.

    Article  CAS  PubMed  Google Scholar 

  109. National Center for Health Statistics. NHANES Select Mean Dietary Intake Estimates 1999-2018. Available from: https://data.cdc.gov/NCHS/NHANES-Select-Mean-Dietary-Intake-Estimates/8wmh-yzz9/about_data.

  110. Vittrup B, McClure D. Barriers to Childhood Obesity Prevention: Parental Knowledge and Attitudes. Pediatr Nurs. 2018;44:81–94.

    Google Scholar 

  111. Rauber F, Campagnolo PD, Hoffman DJ, Vitolo MR. Consumption of ultra-processed food products and its effects on children’s lipid profiles: a longitudinal study. Nutr Metab Cardiovasc Dis. 2015;25:116–22.

    Article  CAS  PubMed  Google Scholar 

  112. Mobley AR, Jones JM, Rodriguez J, Slavin J, Zelman KM. Identifying practical solutions to meet America’s fiber needs: proceedings from the Food & Fiber Summit. Nutrients 2014;6:2540–51.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ross AB, van der Kamp JW, King R, Le KA, Mejborn H, Seal CJ, et al. Perspective: A Definition for Whole-Grain Food Products-Recommendations from the Healthgrain Forum. Adv Nutr. 2017;8:525–31.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Derrien M, Alvarez AS, de Vos WM. The Gut Microbiota in the First Decade of Life. Trends Microbiol. 2019;27:997–1010.

    Article  CAS  PubMed  Google Scholar 

  115. Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20:779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Quagliani D, Felt-Gunderson P. Closing America’s Fiber Intake Gap: Communication Strategies From a Food and Fiber Summit. Am J Lifestyle Med. 2017;11:80–5.

    Article  PubMed  Google Scholar 

  117. Ambrosini GL. Childhood dietary patterns and later obesity: a review of the evidence. Proc Nutr Soc. 2014;73:137–46.

    Article  CAS  PubMed  Google Scholar 

  118. Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean Diet; a Literature Review. Nutrients. 2015;7:9139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Calcaterra V, Verduci E, Vandoni M, Rossi V, Fiore G, Massini G, et al. The Effect of Healthy Lifestyle Strategies on the Management of Insulin Resistance in Children and Adolescents with Obesity: A Narrative Review. Nutrients. 2022;14:4692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Merra G, Noce A, Marrone G, Cintoni M, Tarsitano MG, Capacci A, et al. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients. 2020;13:7.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Blancas-Sanchez IM, Del Rosal Jurado M, Aparicio-Martinez P, Quintana Navarro G, Vaquero-Abellan M, Castro Jimenez RA, et al. A Mediterranean-Diet-Based Nutritional Intervention for Children with Prediabetes in a Rural Town: A Pilot Randomized Controlled Trial. Nutrients. 2022;14:3614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Duncanson K, Shrewsbury V, Burrows T, Chai LK, Ashton L, Taylor R, et al. Impact of weight management nutrition interventions on dietary outcomes in children and adolescents with overweight or obesity: a systematic review with meta-analysis. J Hum Nutr Diet. 2021;34:147–77.

    Article  CAS  PubMed  Google Scholar 

  123. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems 2018;3:e00031–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Administration. USFaD. Nutrient content claims for “good source,” “high,” and “more.” 21 CFR 101.54. Washington (DC): U.S. Government Printing Office; 1996.

    Google Scholar 

  125. Sylvetsky AC, Edelstein SL, Walford G, Boyko EJ, Horton ES, Ibebuogu UN, et al. A High-Carbohydrate, High-Fiber, Low-Fat Diet Results in Weight Loss among Adults at High Risk of Type 2 Diabetes. J Nutr. 2017;147:2060–6.

    Article  PubMed  PubMed Central  Google Scholar 

  126. McRorie JW Jr. Evidence-Based Approach to Fiber Supplements and Clinically Meaningful Health Benefits, Part 2: What to Look for and How to Recommend an Effective Fiber Therapy. Nutr Today. 2015;50:90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Klosterbuer A, Roughead ZF, Slavin J. Benefits of dietary fiber in clinical nutrition. Nutr Clin Pr. 2011;26:625–35.

    Article  Google Scholar 

  128. Roberfroid MB. Inulin-type fructans: functional food ingredients. J Nutr. 2007;137:2493S–502S.

    Article  CAS  PubMed  Google Scholar 

  129. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125:1401–12.

    Article  CAS  PubMed  Google Scholar 

  130. Kolida S, Gibson GR. Prebiotic capacity of inulin-type fructans. J Nutr. 2007;137:2503S–6S.

    Article  CAS  PubMed  Google Scholar 

  131. Visuthranukul C, Chamni S, Kwanbunbumpen T, Saengpanit P, Chongpison Y, Tepaamorndech S, et al. Effects of inulin supplementation on body composition and metabolic outcomes in children with obesity. Sci Rep. 2022;12:13014.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  132. Liu F, Prabhakar M, Ju J, Long H, Zhou HW. Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2017;71:9–20.

    Article  CAS  PubMed  Google Scholar 

  133. Megur A, Daliri EB, Baltriukiene D, Burokas A. Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. Int J Mol Sci. 2022;23:6097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Holscher HD, Faust KL, Czerkies LA, Litov R, Ziegler EE, Lessin H, et al. Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. JPEN J Parenter Enter Nutr. 2012;36:95S–105S.

    Article  CAS  Google Scholar 

  135. Vulevic J, Juric A, Tzortzis G, Gibson GR. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr. 2013;143:324–31.

    Article  CAS  PubMed  Google Scholar 

  136. Canfora EE, van der Beek CM, Hermes GDA, Goossens GH, Jocken JWE, Holst JJ, et al. Supplementation of Diet With Galacto-oligosaccharides Increases Bifidobacteria, but Not Insulin Sensitivity, in Obese Prediabetic Individuals. Gastroenterology. 2017;153:87–97. e3

    Article  CAS  PubMed  Google Scholar 

  137. Dall’Alba V, Silva FM, Antonio JP, Steemburgo T, Royer CP, Almeida JC, et al. Improvement of the metabolic syndrome profile by soluble fibre - guar gum - in patients with type 2 diabetes: a randomised clinical trial. Br J Nutr. 2013;110:1601–10.

    Article  PubMed  Google Scholar 

  138. Wlodarczyk M, Slizewska K. Efficiency of Resistant Starch and Dextrins as Prebiotics: A Review of the Existing Evidence and Clinical Trials. Nutrients. 2021;13:3808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Aryana K, Greenway F, Dhurandhar N, Tulley R, Finley J, Keenan M, et al. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children. F1000Res. 2015;4:139.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Dainty SA, Klingel SL, Pilkey SE, McDonald E, McKeown B, Emes MJ, et al. Resistant Starch Bagels Reduce Fasting and Postprandial Insulin in Adults at Risk of Type 2 Diabetes. J Nutr. 2016;146:2252–9.

    Article  CAS  PubMed  Google Scholar 

  141. Astina J, Saphyakhajorn W, Borompichaichartkul C, Sapwarobol S. Tapioca resistant maltodextrin as a carbohydrate source of oral nutrition supplement (ONS) on metabolic indicators: a clinical trial. Nutrients. 2022;14:916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li S, Guerin-Deremaux L, Pochat M, Wils D, Reifer C, Miller LE. NUTRIOSE dietary fiber supplementation improves insulin resistance and determinants of metabolic syndrome in overweight men: a double-blind, randomized, placebo-controlled study. Appl Physiol Nutr Metab. 2010;35:773–82.

    Article  CAS  PubMed  Google Scholar 

  143. McRorie J. Clinical data support that psyllium is not fermented in the gut. Am J Gastroenterol. 2013;108:1541.

    Article  PubMed  ADS  Google Scholar 

  144. Rigaud D, Paycha F, Meulemans A, Merrouche M, Mignon M. Effect of psyllium on gastric emptying, hunger feeling and food intake in normal volunteers: a double blind study. Eur J Clin Nutr. 1998;52:239–45.

    Article  CAS  PubMed  Google Scholar 

  145. Pal S, Khossousi A, Binns C, Dhaliwal S, Ellis V. The effect of a fibre supplement compared to a healthy diet on body composition, lipids, glucose, insulin and other metabolic syndrome risk factors in overweight and obese individuals. Br J Nutr. 2011;105:90–100.

    Article  CAS  PubMed  Google Scholar 

  146. Ziai SA, Larijani B, Akhoondzadeh S, Fakhrzadeh H, Dastpak A, Bandarian F, et al. Psyllium decreased serum glucose and glycosylated hemoglobin significantly in diabetic outpatients. J Ethnopharmacol. 2005;102:202–7.

    Article  CAS  PubMed  Google Scholar 

  147. King DE, Egan BM, Woolson RF, Mainous AG 3rd, Al-Solaiman Y, Jesri A. Effect of a high-fiber diet vs a fiber-supplemented diet on C-reactive protein level. Arch Intern Med. 2007;167:502–6.

    Article  CAS  PubMed  Google Scholar 

  148. Ribas SA, Cunha DB, Sichieri R, Santana da Silva LC. Effects of psyllium on LDL-cholesterol concentrations in Brazilian children and adolescents: a randomised, placebo-controlled, parallel clinical trial. Br J Nutr. 2015;113:134–41.

    Article  CAS  PubMed  Google Scholar 

  149. Gonzalez AP, Flores-Ramirez A, Gutierrez-Castro KP, Luevano-Contreras C, Gomez-Ojeda A, Sosa-Bustamante GP, et al. Reduction of small dense LDL and Il-6 after intervention with Plantago psyllium in adolescents with obesity: a parallel, double blind, randomized clinical trial. Eur J Pediatr. 2021;180:2493–503.

    Article  CAS  PubMed  Google Scholar 

  150. Puhlmann ML, de Vos WM. Intrinsic dietary fibers and the gut microbiome: Rediscovering the benefits of the plant cell matrix for human health. Front Immunol. 2022;13:954845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shulman RJ, Hollister EB, Cain K, Czyzewski DI, Self MM, Weidler EM, et al. Psyllium Fiber Reduces Abdominal Pain in Children With Irritable Bowel Syndrome in a Randomized, Double-Blind Trial. Clin Gastroenterol Hepatol. 2017;15:712–9. e4

    Article  CAS  PubMed  Google Scholar 

  152. O’Grady J, O’Connor EM, Shanahan F. Review article: dietary fibre in the era of microbiome science. Aliment Pharm Ther. 2019;49:506–15.

    Article  Google Scholar 

  153. Lambeau KV, McRorie JW Jr. Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy. J Am Assoc Nurse Pr. 2017;29:216–23.

    Article  Google Scholar 

  154. Mego M, Accarino A, Tzortzis G, Vulevic J, Gibson G, Guarner F, et al. Colonic gas homeostasis: Mechanisms of adaptation following HOST-G904 galactooligosaccharide use in humans. Neurogastroenterol Motil. 2017;29:e13080.

    Article  Google Scholar 

  155. Slavin JL. Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc. 2008;108:1716–31.

    Article  PubMed  Google Scholar 

  156. Dahl WJ, Agro NC, Eliasson AM, Mialki KL, Olivera JD, Rusch CT, et al. Health Benefits of Fiber Fermentation. J Am Coll Nutr. 2017;36:127–36.

    Article  CAS  PubMed  Google Scholar 

  157. Floruta CV. Dietary choices of people with ostomies. J Wound Ostomy Cont Nurs. 2001;28:28–31.

    CAS  Google Scholar 

  158. Fulham J. Providing dietary advice for the individual with a stoma. Br J Nurs. 2008;17:S22–7.

    Article  PubMed  Google Scholar 

  159. Armstrong HK, Bording-Jorgensen M, Santer DM, Zhang Z, Valcheva R, Rieger AM, et al. Unfermented beta-fructan Fibers Fuel Inflammation in Select Inflammatory Bowel Disease Patients. Gastroenterology. 2023;164:228–40.

    Article  CAS  PubMed  Google Scholar 

  160. Miller T, Suskind DL. Exclusive enteral nutrition in pediatric inflammatory bowel disease. Curr Opin Pediatr. 2018;30:671–6.

    Article  PubMed  Google Scholar 

  161. Food EPoFANSat, Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Frutos MJ, et al. Re-evaluation of locust bean gum (E 410) as a food additive. EFSA J. 2017;15:e04646.

    Google Scholar 

  162. Vanderbeek PB, Fasano C, O’Malley G, Hornstein J. Esophageal obstruction from a hygroscopic pharmacobezoar containing glucomannan. Clin Toxicol. 2007;45:80–2.

    Article  Google Scholar 

  163. Holscher HD, Chumpitazi BP, Dahl WJ, Fahey GC, Liska DJ, Slavin JL, et al. Perspective: Assessing Tolerance to Nondigestible Carbohydrate Consumption. Adv Nutr. 2022;13:2084–97.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We thank our funders, The Weston Family Microbiome Initiative for their continued support for our research. We thank our donors Invovo Biologic Inc. (RES0056385) and the Alberta Diabetes Foundation: Defeating Diabetes (RES0059938) for their generous funding and ongoing support for our research. NB was a recipient of the Alberta Diabetes Institute Graduate Studentship from 2022-2023 and the 2023 TD Bank Financial Group Grant for Health Sciences Interdisciplinary Research Fund Award.

Author information

Authors and Affiliations

Authors

Contributions

NB and ECD have contributed equally to writing the manuscript. FTV, HMA, ECR, RLD, HMT, ZZ, EW, KLM, CJF, and AMH revised the manuscript and approve the final version.

Corresponding author

Correspondence to Andrea M. Haqq.

Ethics declarations

Competing interests

AMH is on advisory boards for Rhythm Pharmaceuticals, Novo Nordisk Canada, and Pfizer Canada. She is a clinical trial investigator for Rhythm Pharmaceuticals, Levo Therapeutics, and Eli Lilly. NB, ECD, FTV, HMA, ECR, RLD, HMT, ZZ, EW, KLM, and CJF – no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basuray, N., Deehan, E.C., Vieira, F.T. et al. Dichotomous effect of dietary fiber in pediatrics: a narrative review of the health benefits and tolerance of fiber. Eur J Clin Nutr (2024). https://doi.org/10.1038/s41430-024-01429-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41430-024-01429-5

Search

Quick links