Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolism and Metabolomics

Metabolomic analysis of serum alpha-tocopherol among men in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study

Abstract

Background/Objectives

The role of vitamin E in chronic disease risk remains incompletely understood, particularly in an un-supplemented state, and evidence is sparse regarding the biological actions and pathways involved in its influence on health outcomes. Identifying vitamin-E-associated metabolites through agnostic metabolomics analyses can contribute to elucidating the specific associations and disease etiology. This study aims to investigate the association between circulating metabolites and serum α-tocopherol concentration in an un-supplemented state.

Subjects/Methods

Metabolomic analysis of 4,294 male participants was conducted based on pre-supplementation fasting serum in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. The associations between 1,791 known metabolites measured by ultra-high-performance LC–MS/GC–MS and HPLC-determined α-tocopherol concentration were estimated using multivariable linear regression. Differences in metabolite levels per unit difference in α-tocopherol concentration were calculated as standardized β-coefficients and standard errors.

Results

A total of 252 metabolites were associated with serum α-tocopherol at the Bonferroni-corrected p value (p < 2.79 × 10−5). Most of these metabolites were of lipid and amino acid origin, with the respective subclasses of dicarboxylic fatty acids, and valine, leucine, and isoleucine metabolism, being highly represented. Among lipids, the strongest signals were observed for linoleoyl-arachidonoyl-glycerol (18:2/20:4)[2](β = 0.149; p = 8.65 × 10−146) and sphingomyelin (D18:2/18:1) (β = 0.035; p = 1.36 × 10−30). For amino acids, the strongest signals were aminoadipic acid (β = 0.021; p = 5.01 × 10−13) and l-leucine (β = 0.007; p = 1.05 × 10−12).

Conclusions

The large number of metabolites, particularly lipid and amino acid compounds associated with serum α-tocopherol provide leads regarding potential mechanisms through which vitamin E influences human health, including its role in cardiovascular disease and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gaussian graphical models of metabolites among associated chemical super-pathways and sub-pathways most related to serum alpha-tocopherol concentration in the study.

Similar content being viewed by others

Code availability

The analytical methods for this study are available from the corresponding author upon appropriate request.

References

  1. Jiang Q, Christen S, Shigenaga MK, Ames BN. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr. 2001;74:714–22.

    Article  CAS  PubMed  Google Scholar 

  2. Traber MG. Vitamin E regulatory mechanisms. Annu Rev Nutr. 2007;27:347–62.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med. 2014;72:76–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ju J, Picinich SC, Yang Z, Zhao Y, Suh N, Kong A-N, et al. Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis. 2010;31:533–42.

    Article  CAS  PubMed  Google Scholar 

  5. Huang J, Weinstein SJ, Yu K, Männistö S, Albanes D. A prospective study of serum vitamin e and 28-year risk of lung cancer. JNCI J Natl Cancer Inst. 2020;112:191–9.

    Article  PubMed  CAS  Google Scholar 

  6. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301:39–51.

    Article  CAS  PubMed  Google Scholar 

  7. Virtamo J, Taylor PR, Kontto J, Männistö S, Utriainen M, Weinstein SJ, et al. Effects of α-tocopherol and β-carotene supplementation on cancer incidence and mortality: 18-year postintervention follow-up of the Alpha-tocopherol, Beta-carotene Cancer Prevention Study. Int J cancer. 2014;135:178–85.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng P, Wang L, Ning S, Liu Z, Lin H, Chen S, et al. Vitamin E intake and risk of stroke: a meta-analysis. Br J Nutr. 2018;120:1181–8.

    Article  CAS  PubMed  Google Scholar 

  9. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr. 2018;108:1069–91.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schwingshackl L, Boeing H, Stelmach-Mardas M, Gottschald M, Dietrich S, Hoffmann G, et al. Dietary supplements and risk of cause-specific death, cardiovascular disease, and cancer: a systematic review and meta-analysis of primary prevention trials. Adv Nutr Int Rev J. 2017;8:27–39.

    Article  CAS  Google Scholar 

  11. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet. 2003;361:2017–23.

    Article  CAS  PubMed  Google Scholar 

  12. The ATBC cancer prevention study group. The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. Ann Epidemiol. 1994;4:1–10.

    Article  Google Scholar 

  13. Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D. Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha‐tocopherol, beta‐carotene cancer prevention (ATBC) study. Int J Cancer. 2015;137:2124–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mondul AM, Sampson JN, Moore SC, Weinstein SJ, Evans AM, Karoly ED, et al. Metabolomic profile of response to supplementation with β-carotene in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Clin Nutr. 2013;98:488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mondul AM, Moore SC, Weinstein SJ, Männistö S, Sampson JN, Albanes D. 1-Stearoylglycerol is associated with risk of prostate cancer: results from a serum metabolomic profiling analysis. Metabolomics. 2014;10:1036–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mondul AM, Moore SC, Weinstein SJ, Evans AM, Karoly ED, Männistö S, et al. Serum metabolomic response to long-term supplementation with all-rac-α-tocopheryl acetate in a randomized controlled trial. J Nutr Metab. 2016;2016:6158436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Huang J, Weinstein SJ, Kitahara CM, Karoly ED, Sampson JN, Albanes D. A prospective study of serum metabolites and glioma risk. Oncotarget. 2017;8:70366–77.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang J, Mondul AM, Weinstein SJ, Karoly ED, Sampson JN, Albanes D. Prospective serum metabolomic profile of prostate cancer by size and extent of primary tumor. Oncotarget. 2017;8:45190–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang J, Mondul AM, Weinstein SJ, Derkach A, Moore SC, Sampson JN, et al. Prospective serum metabolomic profiling of lethal prostate cancer. Int J cancer. 2019;145:3231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stolzenberg-Solomon R, Derkach A, Moore S, Weinstein SJ, Albanes D, Sampson J. Associations between metabolites and pancreatic cancer risk in a large prospective epidemiological study. Gut. 2020;69:2008–15.

    Article  CAS  PubMed  Google Scholar 

  21. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009;81:6656–67.

    Article  CAS  PubMed  Google Scholar 

  22. Dehaven CD, Evans AM, Dai H, Lawton KA. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminform. 2010;2:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nelson SM, Panagiotou OA, Anic GM, Mondul AM, Männistö S, Weinstein SJ, et al. Metabolomics analysis of serum 25-hydroxy-vitamin D in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Int J Epidemiol. 2016;45:1458–68.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Efron B, Tibshirani R. On testing the significance of sets of genes. Ann Appl Stat. 2007;1:107–29.

    Article  Google Scholar 

  25. Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123:4309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang J, Mondul AM, Weinstein SJ, Koutros S, Derkach A, Karoly E, et al. Serum metabolomic profiling of prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Br J Cancer. 2016;115:1087–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cross AJ, Major JM, Sinha R. Urinary biomarkers of meat consumption. Cancer Epidemiol Biomark Prev. 2011;20:1107–11.

    Article  CAS  Google Scholar 

  28. Elliott P, Posma JM, Chan Q, Garcia-Perez I, Wijeyesekera A, Bictash M, et al. Urinary metabolic signatures of human adiposity. Sci Transl Med. 2015;7:285ra62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang K, Zelnick LR, Hoofnagle AN, Chen Y, de Boer IH, Himmelfarb J, et al. Differences in proximal tubular solute clearance across common etiologies of chronic kidney disease. Nephrol Dial Transpl. 2020;35:1916–23.

    Article  CAS  Google Scholar 

  30. Chen Y, Zelnick LR, Wang K, Hoofnagle AN, Becker JO, Hsu C, et al. Kidney clearance of secretory solutes is associated with progression of CKD: The CRIC Study. J Am Soc Nephrol. 2020;31:817–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lécuyer L, Dalle C, Micheau P, Pétéra M, Centeno D, Lyan B, et al. Untargeted plasma metabolomic profiles associated with overall diet in women from the SU.VI.MAX cohort. Eur J Nutr. 2020;59:3425–39.

    Article  PubMed  CAS  Google Scholar 

  32. Abdulla KA, Um CY, Gross MD, Bostick RM. Circulating γ-tocopherol concentrations are inversely associated with antioxidant exposures and directly associated with systemic oxidative stress and inflammation in adults. J Nutr. 2018;148:1453–61.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, et al. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med. 2017;102:16–36.

    Article  CAS  PubMed  Google Scholar 

  34. Turrini E, Sestili P, Fimognari C. Overview of the anticancer potential of the “king of spices” piper nigrum and its main constituent piperine. Toxins (Basel). 2020;12:747.

    Article  CAS  Google Scholar 

  35. Pastor RF, Repetto MG, Lairion F, Lazarowski A, Merelli A, Manfredi Carabetti Z, et al. Supplementation with resveratrol, piperine and alpha-tocopherol decreases chronic inflammation in a cluster of older adults with metabolic syndrome. Nutrients. 2020;12:3149.

    Article  CAS  PubMed Central  Google Scholar 

  36. Feng B, Guo Z, Zhang W, Pan Y, Zhao Y. Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus. BMC Microbiol. 2016;16:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wright ME, Bowen P, Virtamo J, Albanes D, Gann PH. Estimated phytanic acid intake and prostate cancer risk: a prospective cohort study. Int J Cancer. 2012;131:1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamal-Eldin A, Appelqvist L-Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31:671–701.

    Article  CAS  PubMed  Google Scholar 

  39. Perng W, Rifas‐Shiman SL, Sordillo J, Hivert M, Oken E. Metabolomic profiles of overweight/obesity phenotypes during adolescence: a cross‐sectional study in project viva. Obesity. 2020;28:379–87.

    Article  CAS  PubMed  Google Scholar 

  40. Preuss C, Jelenik T, Bódis K, Müssig K, Burkart V, Szendroedi J, et al. A new targeted lipidomics approach reveals lipid droplets in liver, muscle and heart as a repository for diacylglycerol and ceramide species in non-alcoholic fatty liver. Cells. 2019;8:277.

    Article  CAS  PubMed Central  Google Scholar 

  41. Carrasco S, Mérida I. Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci. 2007;32:27–36.

    Article  CAS  PubMed  Google Scholar 

  42. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510:58–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Norris GH, Blesso CN. Dietary and endogenous sphingolipid metabolism in chronic inflammation. Nutrients. 2017;9:1180.

    Article  PubMed Central  CAS  Google Scholar 

  44. Turpin-Nolan SM, Brüning JC. The role of ceramides in metabolic disorders: when size and localization matters. Nat Rev Endocrinol. 2020;16:224–33.

    Article  CAS  PubMed  Google Scholar 

  45. Cross AJ, Moore SC, Boca S, Huang W-Y, Xiong X, Stolzenberg-Solomon R, et al. A prospective study of serum metabolites and colorectal cancer risk. Cancer. 2014;120:3049–57.

    Article  CAS  PubMed  Google Scholar 

  46. Loftfield E, Rothwell JA, Sinha R, Keski-Rahkonen P, Robinot N, Albanes D, et al. Prospective investigation of serum metabolites, coffee drinking, liver cancer incidence, and liver disease mortality. JNCI J Natl Cancer Inst. 2020;112:286–94.

    Article  PubMed  CAS  Google Scholar 

  47. Albanes D, Heinonen OP, Taylor PR, Virtamo J, Edwards BK, Rautalahti M, et al. -Tocopherol and beta-Carotene Supplements and Lung Cancer Incidence in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study: Effects of Base-line Characteristics and Study Compliance. JNCI J Natl Cancer Inst. 1996;88:1560–70.

    Article  CAS  PubMed  Google Scholar 

  48. Wu Q-J, Xiang Y-B, Yang G, Li H-L, Lan Q, Gao Y-T, et al. Vitamin E intake and the lung cancer risk among female nonsmokers: a report from the Shanghai Women’s Health Study. Int J cancer. 2015;136:610–7.

    CAS  PubMed  Google Scholar 

  49. Huang J, Weinstein SJ, Yu K, Männistö S, Albanes D. Relationship between serum alpha-tocopherol and overall and cause-specific mortality. Circ Res. 2019;125:29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JMO, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer. JAMA. 2005;293:1338.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the participants in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study for their contributions to this research.

Funding

This research was supported by the Intramural Research Program of the US National Institutes of Health (NIH) National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: WRL, JNS, DA. Development of methodology: WRL, JH, JNS, DA. Acquisition of data WRL, SJW, DA. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): WL, JL, JH, SJW, JNS, DA. Writing, review, and/or revision of the manuscript: WRL, JL, JH, JNS, SJW, DA.

Corresponding authors

Correspondence to Wayne R. Lawrence or Demetrius Albanes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, W.R., Lim, JE., Huang, J. et al. Metabolomic analysis of serum alpha-tocopherol among men in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Eur J Clin Nutr 76, 1254–1265 (2022). https://doi.org/10.1038/s41430-022-01112-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-022-01112-7

This article is cited by

Search

Quick links