Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actinobacterial chalkophores: the biosynthesis of hazimycins

Abstract

Copper is a transition metal element with significant effects on the morphological development and secondary metabolism of actinobacteria. In some microorganisms, copper-binding natural products are employed to modulate copper homeostasis, although their significance in actinobacteria remains largely unknown. Here, we identified the biosynthetic genes of the diisocyanide natural product hazimycin in Kitasatospora purpeofusca HV058, through gene knock-out and heterologous expression. Biochemical analyses revealed that hazimycin A specifically binds to copper, which diminishes its antimicrobial activity. The presence of a set of putative importer/exporter genes surrounding the biosynthetic genes suggested that hazimycin is a chalkophore that modulates the intracellular copper level. A bioinformatic survey of homologous gene cassettes, as well as the identification of two previously unknown hazimycin-producing Streptomyces strains, indicated that the isocyanide-based mechanism of copper homeostasis is prevalent in actinobacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Genome sequence of K. purpeofusca HV058 was deposited in DDBJ under following accession ID: AP028455 (chromosome) and AP028456 (plasmid).

References

  1. Kenney GE, Rosenzweig AC. Chalkophores. Annu Rev Biochem. 2018;87:645–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans. 2015;44:6320–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, et al. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science. 2004;305:1612–5.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Kenney GE, Dassama LMK, Pandelia ME, Gizzi AS, Martinie RJ, Gao P, et al. The biosynthesis of methanobactin. Science. 2018;359:1411–16.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Anttila J, Heinonen P, Nenonen T, Pino A, Iwaï H, Kauppi E, et al. Is coproporphyrin III a copper-acquisition compound in Paracoccus denitrificans? Biochim Biophys Acta. 2011;1807:311–8.

    Article  CAS  PubMed  Google Scholar 

  6. Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol. 2012;8:731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koh EI, Robinson AE, Bandara N, Rogers BE, Henderson JP. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat Chem Biol. 2017;13:1016–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patteson JB, Putz AT, Tao L, Simke WC, Bryant LH 3rd, et al. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science. 2021;374:1005–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Rothe W. The new antibiotic xanthocillin. Dtsch Med Wochenschr. 1954;79:1080–1.

    Article  CAS  PubMed  Google Scholar 

  10. Edenborough MS, Herbert RB. Naturally occurring isocyanides. Nat Prod Rep. 1988;5:229–45.

    Article  CAS  PubMed  Google Scholar 

  11. Garson MJ, Simpson JS. Marine isocyanides and related natural products-structure, biosynthesis and ecology. Nat Prod Rep. 2004;21:164–79.

    Article  CAS  PubMed  Google Scholar 

  12. Emsermann J, Kauhl U, Opatz T. Marine isonitriles and their related compounds. Mar Drugs. 2016;14:16.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hohlman RM, Sherman DH. Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity. Nat Prod Rep. 2021;38:1567–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal chemistry of isocyanides. Chem Rev. 2021;121:10742–88.

    Article  CAS  PubMed  Google Scholar 

  15. Lim FY, Won TH, Raffa N, Baccile JA, Wisecaver J, Rokas A, et al. Fungal isocyanide synthases and xanthocillin biosynthesis in aspergillus fumigatus. mBio. 2018;9:e00785–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raffa N, Won TH, Sukowaty A, Candor K, Cui C, Halder S, et al. Dual-purpose isocyanides produced by Aspergillus fumigatus contribute to cellular copper sufficiency and exhibit antimicrobial activity. Proc Natl Acad Sci USA. 2021;118:e2015224118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hübner I, Shapiro JA, Hoßmann J, Drechsel J, Hacker SM, Rather PN, et al. Broad spectrum antibiotic xanthocillin X effectively kills acinetobacter baumanniivia dysregulation of heme biosynthesis. ACS Cent Sci. 2021;7:488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang L, Zhu M, Zhang Q, Zhang X, Yang P, Liu Z, et al. Diisonitrile natural product SF2768 functions as a chalkophore that mediates copper acquisition in Streptomyces thioluteus. ACS Chem Biol. 2017;12:3067–75.

    Article  CAS  PubMed  Google Scholar 

  19. Harris NC, Sato M, Herman NA, Twigg F, Cai W, Liu J, et al. Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. Proc Natl Acad Sci USA. 2017;114:7025–30.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Mehdiratta K, Singh S, Sharma S, Bhosale RS, Choudhury R, Masal DP, et al. Kupyaphores are zinc homeostatic metallophores required for colonization of Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2022;119:e2110293119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Del Rio Flores A, Narayanamoorthy M, Cai W, Zhai R, Yang S, Shen Y, et al. Biosynthesis of isonitrile lipopeptide metallophores from pathogenic mycobacteria. Biochemistry. 2023;62:824–34.

    Article  PubMed  Google Scholar 

  22. Ueda K, Tomaru Y, Endoh K, Beppu T. Stimulatory effect of copper on antibiotic production and morphological differentiation in Streptomyces tanashiensis. J Antibiot. 1997;50:693–5.

    Article  CAS  Google Scholar 

  23. Keijser BJ, van Wezel GP, Canters GW, Kieser T, Vijgenboom E. The ram-dependence of Streptomyces lividans differentiation is bypassed by copper. J Mol Microbiol Biotechnol. 2000;2:565–74.

    CAS  PubMed  Google Scholar 

  24. Worrall JA, Vijgenboom E. Copper mining in Streptomyces: enzymes, natural products and development. Nat Prod Rep. 2010;27:742–56.

    Article  CAS  PubMed  Google Scholar 

  25. Locatelli FM, Goo KS, Ulanova D. Effects of trace metal ions on secondary metabolism and the morphological development of Streptomycetes. Metallomics. 2016;8:469–80.

    Article  CAS  PubMed  Google Scholar 

  26. González-Quiñónez N, Corte-Rodríguez M, Álvarez-Fernández-García R, Rioseras B, López-García MT, Fernández-García G, et al. Cytosolic copper is a major modulator of germination, development and secondary metabolism in Streptomyces coelicolor. Sci Rep. 2019;9:4214. 12

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  27. Kim Wright JJ, Cooper AB, McPhail AT, Merrill Y, Nagabhushan TL, Puar MS. X-Ray crystal structure determination and synthesis of the new isonitrile-containing antibiotics, hazimycin factors 5 and 6. J Chem Soc Chem Commun. 1982;1188–90.

  28. Marquez JA, Horan AC, Kalyanpur M, Lee BK, Loebenberg D, Miller GH, et al. The hazimicins, a new class of antibiotics. Taxonomy, fermentation, isolation, characterization and biological properties. J Antibiot. 1983;36:1101–8.

    Article  CAS  Google Scholar 

  29. Koyama N, Sato H, Tomoda H. Discovery of new hazimycin congeners from Kitasatospora sp. P07101. Acta Pharm Sin B. 2015;5:564–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Briza P, Eckerstorfer M, Breitenbach M. The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Proc Natl Acad Sci USA. 1994;91:4524–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Brady SF, Clardy J. Cloning and heterologous expression of isocyanide biosynthetic genes from environmental DNA. Angew Chem Int Ed Engl. 2005;44:7063–5.

    Article  CAS  PubMed  Google Scholar 

  32. Drake EJ, Gulick AM. Three-dimensional structures of Pseudomonas aeruginosa PvcA and PvcB, two proteins involved in the synthesis of 2-isocyano-6,7-dihydroxycoumarin. J Mol Biol. 2008;384:193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crawford JM, Kontnik R, Clardy J. Regulating alternative lifestyles in entomopathogenic bacteria. Curr Biol. 2010;20:69–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang YB, Cai W, Del Rio Flores A, Twigg FF, Zhang W. Facile discovery and quantification of isonitrile natural products via tetrazine-based click reactions. Anal Chem. 2020;92:599–602.

    Article  CAS  PubMed  Google Scholar 

  35. Funabashi M, Yang Z, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, et al. An ATP-independent strategy for amide bond formation in antibiotic biosynthesis. Nat Chem Biol. 2010;6:581–6.

    Article  CAS  PubMed  Google Scholar 

  36. Goda M, Hashimoto Y, Shimizu S, Kobayashi M. Discovery of a novel enzyme, isonitrile hydratase, involved in nitrogen-carbon triple bond cleavage. J Biol Chem. 2001;276:23480–5.

    Article  CAS  PubMed  Google Scholar 

  37. Sato H, Hashimoto Y, Fukatsu H, Kobayashi M. Novel isonitrile hydratase involved in isonitrile metabolism. J Biol Chem. 2010;285:34793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu W, Zheng H. Cryo-EM reveals unique structural features of the FhuCDB Escherichia coli ferrichrome importer. Commun Biol. 2021;4:1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Korkhov VM, Mireku SA, Locher KP. Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature. 2012;490:367–72.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Choi DW, Zea CJ, Do YS, Semrau JD, Antholine WE, Hargrove MS, et al. Spectral, kinetic, and thermodynamic properties of Cu(I) and Cu(II) binding by methanobactin from Methylosinus trichosporium OB3b. Biochemistry. 2006;45:1442–53.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu M, Wang L, Zhang W, Liu Z, Ali M, Imtiaz M, He J. Diisonitrile-mediated reactive oxygen species accumulation leads to bacterial growth inhibition. J Nat Prod. 2020;83:1634–40.

    Article  CAS  PubMed  Google Scholar 

  42. Srinivasan S, Avadhani NG. Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med. 2012;53:1252–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI, et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol. 2020;16:60–68.

    Article  PubMed  Google Scholar 

  44. Brady SF, Clardy J. Systematic investigation of the Escherichia coli metabolome for the biosynthetic origin of an isocyanide carbon atom. Angew Chem Int Ed Engl. 2005;44:7045–8.

    Article  CAS  PubMed  Google Scholar 

  45. Chang WC, Sanyal D, Huang JL, Ittiamornkul K, Zhu Q, Liu X. In vitro stepwise reconstitution of amino acid derived vinyl isocyanide biosynthesis: detection of an elusive intermediate. Org Lett. 2017;19:1208–11.

    Article  CAS  PubMed  Google Scholar 

  46. Harris NC, Born DA, Cai W, Huang Y, Martin J, Khalaf R, et al. Isonitrile formation by a non-heme iron(ii)-dependent oxidase/decarboxylase. Angew Chem Int Ed Engl. 2018;57:9707–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dose B, Niehs SP, Scherlach K, Shahda S, Flórez LV, Kaltenpoth M, et al. Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from Burkholderia Symbionts. Chembiochem. 2021;22:1920–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Won TH, Bok JW, Nadig N, Venkatesh N, Nickles G, Greco C, et al. Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi. Nat Commun. 2022;13:4828.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Chen TY, Zheng Z, Zhang X, Chen J, Cha L, Tang Y, et al. Deciphering the reaction pathway of mononuclear iron enzyme-catalyzed N≡C triple bond formation in isocyanide lipopeptide and polyketide biosynthesis. ACS Catal. 2022;12:2270–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment. 1987;65:501–9.

    Article  CAS  Google Scholar 

  51. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces genetics. Norwich: John Innes Foundation; 2000.

    Google Scholar 

  52. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6.

    Article  CAS  PubMed  Google Scholar 

  53. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  54. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y, Arita M. DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health. 2016;35:173–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics. 2022;38:5315–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Feeney MA, Newitt JT, Addington E, Algora-Gallardo L, Allan C, Balis L, et al. ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria. Micro Genom. 2022;8:mgen000824.

    Google Scholar 

  59. Kim JH, Komatsu M, Shin-Ya K, Omura S, Ikeda H. Distribution and functional analysis of the phosphopantetheinyl transferase superfamily in Actinomycetales microorganisms. Proc Natl Acad Sci USA. 2018;115:6828–33.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  60. Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA. 2010;107:2646–51.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Matsuda K, Kobayashi M, Kuranaga T, Takada K, Ikeda H, Matsunaga S, et al. SurE is a trans-acting thioesterase cyclizing two distinct non-ribosomal peptides. Org Biomol Chem. 2019;17:1058–61.

    Article  CAS  PubMed  Google Scholar 

  62. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.

    Article  Google Scholar 

  63. Eddy SR. Accelerated profile HMM searches. PLoS Comp Biol. 2011;7:e1002195.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  64. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. datasets: www.ncbi.nlm.nih.gov/datasets

  66. Entrez Help [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2005-. Entrez Help. 2006 Jan 20 [Updated 2016 May 31]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK3836/

  67. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU), funded by MEXT under “Support Program for Implementation of New Equipment Sharing System”, Global Station for Biosurfaces and Drug Discovery, a project of Global Institution for Collaborative Research and Education in Hokkaido University, the Asahi Glass Foundation, the Naito Foundation, the Uehara Memorial Foundation, the Sumitomo Foundation−Grant for Basic Science Research Projects, Daiichi Sankyo Foundation of Life Science, Japan Foundation for Applied Enzymology, TERUMO Life Science Foundation, the Japan Agency for Medical Research and Development (AMED Grant Numbers JP23ak0101163, JP23ama121039, JP23gm1610007), Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japan Science and Technology Agency (JST Grant Numbers ACT-X JPMJAX201F and A-STEP JPMJTR20US), JSPS KAKENHI (Grant numbers JP16H06448, JP18H02581, JP19K16390, JP21H02635, JP22K15302, JP22H05128 and JP23K17410).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenichi Matsuda or Toshiyuki Wakimoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, K., Maruyama, H., Imachi, K. et al. Actinobacterial chalkophores: the biosynthesis of hazimycins. J Antibiot 77, 228–237 (2024). https://doi.org/10.1038/s41429-024-00706-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-024-00706-6

Search

Quick links