Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluorothiazinon inhibits the virulence factors of uropathogenic Escherichia coli involved in the development of urinary tract infection

Abstract

Uropathogenic Escherichia coli (UPEC) is the most common pathogenic bacterium associated with urinary tract infection. Due to the development of antibiotic resistance and MDR, UPEC infection has become a serious problem in the last decade. In order to combat resistance, it is necessary to develop innovative antimicrobial agents that act by different mechanisms than conventional antibiotics. Among the new therapeutic strategies, suppression of pathogen virulence has become a promising alternative, since it fundamentally reduces selective pressure and the development of resistance. In our study, we showed that the compound Fluorothiazinon suppressed UPEC’s ability to form biofilms and to move using the flagellum, as well as to penetrate into cells. Prophylactic use with subsequent treatment of FT in rodent models led to an improvement in survival and significantly reduced the bacterial load in the organs of the urinary system, thereby inhibiting the development of ascending infection and preventing the development of pathological changes in prostate tissues. These results suggest that FT affects several UPEC virulence factors at once and if similar results can be found in clinical trials it can potentially be used as a new drug against UPEC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13:269–84. https://doi.org/10.1038/nrmicro3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sabih A, Leslie SW. StatPearls. In: Complicated urinary tract infections. Treasure Island (FL): StatPearls Publishing; 2022.

  3. Zagaglia C, Ammendolia MG, Maurizi L, Nicoletti M, Longhi C. Urinary tract infections caused by uropathogenic Escherichia coli strains—new strategies for an old pathogen. Microorganisms. 2022;10:1425 https://doi.org/10.3390/microorganisms10071425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parvez SA, Rahman D. Virulence factors of uropathogenic E. coli. In: Microbiology of urinary tract Infections-microbial agents and predisposing factors. IntechOpen; 2018. p. 7–21. https://doi.org/10.5772/intechopen.79557.

  5. Samet M, Ghaemi E, Nejad MH, Jamali A. Prevalence of different virulence factors and biofilm production ability of urinary Escherichia coli isolates. Int J Biol Med Res. 2014;5:4546–9.

    Google Scholar 

  6. Valiatti TB, et al. Genetic and virulence characteristics of a hybrid atypical enteropathogenic and uropathogenic Escherichia coli (aEPEC/UPEC) Strain. Front Cell Infect Microbiol. 2020;10:492 https://doi.org/10.3389/fcimb.2020.00492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rezatofighi SE, Mirzarazi M, Salehi M. Virulence genes and phylogenetic groups of uropathogenic Escherichia coli isolates from patients with urinary tract infection and uninfected control subjects: a case-control study. BMC Infect Dis. 2021;21:361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012;2012:681473 https://doi.org/10.1155/2012/681473.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Elkahwaji JE, Ott CJ, Janda LM, Hopkins WJ. Mouse model for acute bacterial prostatitis in genetically distinct inbred strains. Urology. 2005;66:883–7. https://doi.org/10.1016/j.urology.2005.04.013.

    Article  PubMed  Google Scholar 

  10. Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 2017;8:1566 https://doi.org/10.3389/fmicb.2017.01566.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Trautner BW, Darouiche RO. Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control. 2004;32:177–83. https://doi.org/10.1016/j.ajic.2003.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bartoletti R, Cai T, Wagenlehner FM, Naber K, Bjerklund Johansen TE. Treatment of urinary tract infections and antibiotic stewardship. Eur Urol Suppl. 2016;15:81–87. https://doi.org/10.1016/j.eursup.2016.04.003.

    Article  Google Scholar 

  13. Sanchez GV, Babiker A, Master RN, Luu T, Mathur A, Bordon J. Antibiotic resistance among urinary isolates from female outpatients in the United States in 2003 and 2012. Antimicrob Agents Chemother. 2016;60:2680–3. https://doi.org/10.1128/AAC.02897-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Munguia J, Nizet V. Pharmacological targeting of the host-pathogen interaction: alternatives to classical antibiotics to combat drug-resistant superbugs. Trends Pharmacol Sci. 2017;38:473–88. https://doi.org/10.1016/j.tips.2017.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martínez OF, Cardoso MH, Ribeiro SM, Franco OL. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol. 2019;9:74 https://doi.org/10.3389/fcimb.2019.00074.

    Article  CAS  Google Scholar 

  16. Muller S, Feldman MF, Cornelis GR. The Type III secretion system of Gram-negative bacteria: a potential therapeutic target? Expert Opin Ther Targets. 2001;5:327–39. https://doi.org/10.1517/14728222.5.3.327.

    Article  CAS  PubMed  Google Scholar 

  17. Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci. 2015;370:20150020 https://doi.org/10.1098/rstb.2015.0020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koroleva EA, Kobets NV, Zayakin ES, Luyksaar SI, Shabalina LA, Zigangirova NA. Small molecule inhibitor of type three secretion suppresses acute and chronic Chlamydia trachomatis infection in a novel urogenital Chlamydia model. Biomed Res Int. 2015;2015:484853 https://doi.org/10.1155/2015/484853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheremet AB, Zigangirova NA, Zayakin ES, Luyksaar SI, Kapotina LN, Nesterenko LN, et al. Small molecule inhibitor of type three secretion system belonging to a class 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-ones improves survival and decreases bacterial loads in an airway Pseudomonas aeruginosa infection in mice. Biomed Res Int. 2018;2018:5810767 https://doi.org/10.1155/2018/5810767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zigangirova NA, Nesterenko LN, Sheremet AB, Soloveva AV, Luyksaar SI, Zayakin ES, et al. Fluorothiazinon, a small-molecular inhibitor of T3SS, suppresses salmonella oral infection in mice. J Antibiot. 2021;74:244–54. https://doi.org/10.1038/s41429-020-00396-w.

    Article  CAS  Google Scholar 

  21. Zhou M, Guo Z, Duan Q, Hardwidge PR, Zhu G. Escherichia coli type III secretion system 2: a new kind of T3SS? Vet Res. 2014;45:32 https://doi.org/10.1186/1297-9716-45-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyazaki J, Ba-Thein W, Kumao T, Akaza H, Hayashi H. Identification of a type III secretion system in uropathogenic Escherichia coli. FEMS Microbiol Lett. 2002;212:221–8. https://doi.org/10.1111/j.1574-6968.2002.tb11270.x.

    Article  CAS  PubMed  Google Scholar 

  23. Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Micro Physiol. 2014;65:337–72. https://doi.org/10.1016/bs.ampbs.2014.08.006.

    Article  CAS  Google Scholar 

  24. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 2000;19:2803–12. https://doi.org/10.1093/emboj/19.12.2803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Conte MP, Aleandri M, Marazzato M, Conte AL, Ambrosi C, Nicoletti M, et al. The adherent/invasive Escherichia coli (AIEC) strain LF82 invades and persists in human prostate cell lineRWPE-1 activating a strong inflammatory response. Infect Immun. 2016;84:3105–13. https://doi.org/10.1128/IAI.00438-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ho C-H, Fan C-K, Yu H-J, Wu C-C, Chen K-C, Liu S-P, et al. Testosterone suppresses uropathogenic Escherichia coli invasion and colonization within prostate cells and inhibits inflammatory responses through JAK/STAT-1 signaling pathway. PLoS ONE. 2017;12:e0180244 https://doi.org/10.1371/journal.pone.0180244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zigangirova NA, Zayakin ES, Kapotina LN, Kost EA, DidenkoLV, Davydova DY, et al. Development of chlamydial type III secretion system inhibitors for suppression of acute and chronic forms of chlamydial infection. Acta Nat. 2012;4:87–97. https://doi.org/10.1099/jmm.0.000189.

    Article  CAS  Google Scholar 

  28. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;36:493–6.

    Article  Google Scholar 

  29. Das SC, Ramamurthy T, Ghosh S, Pazhani GP, Sen T, Singh R. Molecular characterization of locus of enterocyte effacement pathogenicity island in shigatoxic Escherichia coli isolated from human and cattle in West Bengal, India. Indian J Med Res. 2017;146:S30–S37. https://doi.org/10.4103/ijmr.IJMR_1877_15.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Knutton S, Baldwin T, Williams PH, McNeish AS. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun. 1989;57:1290–8. https://doi.org/10.1128/iai.57.4.1290-1298.1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang S, Liu X, Xu X, Yang D, Wang D, Han X, et al. Escherichia coli type III secretion system 2 ATPase EivC is involved in the motility and virulence of avian pathogenic Escherichia coli. Front Microbiol. 2016;7:1387 https://doi.org/10.3389/fmicb.2016.01387.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aggarwal N, Lotfollahzadeh S. Recurrent urinary tract infections. Treasure Island (FL): StatPearls Publishing; 2022 Jan.

  33. Glover M, Moreira CG, Sperandio V, Zimmern P. Recurrent urinary tract infections in healthy and nonpregnant women. Urol Sci. 2014; 1–8. https://doi.org/10.1016/j.urols.2013.11.007.

  34. Sharma K, Dhar N, Thacker VV, Signorino-Gelo F, Knott GW, McKinney JD. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 2021;10:e66481 https://doi.org/10.7554/eLife.66481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larzábal M, Da Silva WM, Riviere NA, Cataldi AA. Novel effector protein EspY3 of Type III secretion system from enterohemorrhagic Escherichia coli is localized in actin pedestals. Microorganisms. 2018;6:112 https://doi.org/10.3390/microorganisms6040112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vega-Hernández R, Ochoa SA, Valle-Rios R, et al. Flagella, Type I fimbriae and curli of uropathogenic Escherichia coli promote the release of proinflammatory cytokines in a coculture system. Microorganisms. 2021;9:2233 https://doi.org/10.3390/microorganisms9112233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haiko J, Westerlund-Wikström B. The role of the bacterial flagellum in adhesion and virulence. Biology. 2013;2:1242–67. https://doi.org/10.3390/biology2041242.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bondareva NE, Soloveva AV, Sheremet AB, Koroleva EA, Kapotina LN, et al. Preventative treatment with Fluorothiazinon suppressed Acinetobacter baumannii-associated septicemia in mice. J Antibiot. 2022;75:155–63.

    Article  CAS  Google Scholar 

  39. Niu H, Cui P, Shi W, et al. Identification of anti-persister activity against uropathogenic Escherichia coli from a clinical drug library. Antibiotics. 2015;4:179–87. https://doi.org/10.3390/antibiotics4020179.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Roy R, Tiwari M, Donelli G, Tiwaria V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9:522–54. https://doi.org/10.1080/21505594.2017.1313372.

    Article  CAS  PubMed  Google Scholar 

  41. Boya BR, Lee J-H, Lee J. Antibiofilm and antimicrobial activities of chloroindoles against uropathogenic Escherichia coli. Front Microbiol. 2022;13:872943 https://doi.org/10.3389/fmicb.2022.872943.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Eberly AR, Beebout CJ, Tong CMC, et al. Defining a molecular signature for uropathogenic versus urocolonizing Escherichia coli: the status of the field and new clinical opportunities. J Mol Biol. 2020;432:786–804. https://doi.org/10.1016/j.jmb.2019.11.008.

    Article  CAS  PubMed  Google Scholar 

  43. Kim HY, et al. A novel rat model of catheter-associated urinary tract infection. Int Urol Nephrol. 2015;47:1259–63. https://doi.org/10.1007/s11255-015-1038-5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Koroleva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroleva, E.A., Soloveva, A.V., Morgunova, E.Y. et al. Fluorothiazinon inhibits the virulence factors of uropathogenic Escherichia coli involved in the development of urinary tract infection. J Antibiot 76, 279–290 (2023). https://doi.org/10.1038/s41429-023-00602-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00602-5

Search

Quick links