Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Four new chromone derivatives from the Arctic fungus Phoma muscivora CPCC 401424 and their antiviral activities

Abstract

The crude extract of the Arctic fungus Phoma muscivora CPCC 401424 displayed anti-influenza A virus activities which led us to investigated their secondary metabolites. Four new chromone derivatives, phomarcticones A–D (14) and five known chromone analogs (59) have been isolated from Arctic fungus Phoma muscivora CPCC 401424. Compounds 3 and 4 possess rare sulfoxide groups in chromone derivatives. Their structures and absolute configurations were elucidated by extensive analysis of spectroscopic data, electronic circular dichroism, and comparison with reported data. Compounds 3, 7, and 9 showed significant anti-influenza A virus activities with the IC50 values of 24.4, 4.2, and 2.7 μM, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schueffler A, Anke T. Fungal natural products in research and development. Nat Prod Rep. 2014;31:1425–48.

    Article  CAS  Google Scholar 

  2. El-Elimat T, Raja HA, Figueroa M, Al Sharie AH, Bunch RL, Oberlies NH. Freshwater fungi as a source of chemical diversity: a review. J Nat Prod. 2021;84:898–916.

    Article  CAS  Google Scholar 

  3. Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC. Phoma identification manual, 1st edn. Wallingford, UK: CABI Publishing; 2004.

  4. Rai M, Gade A, Zimowska B, Ingle AP, Ingle P. Marine-derived Phoma-the gold mine of bioactive compounds. Appl Microbiol Biotechnol. 2018;102:9053–66.

    Article  CAS  Google Scholar 

  5. Rai M, Zimowska B, Kövics GJ Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, 2022, pp 205–19.

  6. Rai M, Zimowska B, Gade A, Ingle P. Promising antimicrobials from Phoma spp.: progress and prospects. AMB Express. 2022;12:60.

    Article  CAS  Google Scholar 

  7. Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, et al. Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol. 2012;93:1231–9.

    Article  CAS  Google Scholar 

  8. Mohamed IE, Gross H, Pontius A, Kehraus S, Krich A, Kelter G, et al. Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett. 2009;11:5014–7.

    Article  CAS  Google Scholar 

  9. Kong F, Wang Y, Liu P, Dong T, Zhu W. Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. J Nat Prod. 2014;77:132–7.

    Article  CAS  Google Scholar 

  10. Peng X, He Y, Gao Y, Duan F, Chen J, Ruan H. Cytochalasins from an endophytic fungus Phoma multirostrata XJ-2-1 with cell cycle arrest and TRAIL-resistance-overcoming activities. Bioorg Chem. 2020;104:104317.

    Article  CAS  Google Scholar 

  11. Shi T, Qi J, Shao CL, Zhao DL, Hou XM, Wang CY. Bioactive diphenyl ethers and isocoumarin derivatives from a gorgonian-derived fungus Phoma sp. (TA07-1). Mar Drugs. 2017;15:146.

    Article  Google Scholar 

  12. Arora P, Wani ZA, Nalli Y, Ali A, Riyaz-UI-Hassan S. Antimicrobial potential of thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhiza glabra Linn. Micro Ecol. 2016;72:802–12.

    Article  CAS  Google Scholar 

  13. Lee MS, Wang SW, Wang GJ, Pang KL, Lee CK, Kuo YH, et al. Angiogenesis inhibitors and anti-inflammatory agents from Phoma sp. NTOU4195. J Nat Prod. 2016;79:2983–90.

    Article  CAS  Google Scholar 

  14. Peng X, Duan F, He Y, Gao Y, Chen J, Chang J, et al. Ergocytochalasin A, a polycyclic merocytochalasan from an endophytic fungus Phoma multirostrata XJ-2-1. Org Biomol Chem 2020;18:4056–62.

    Article  CAS  Google Scholar 

  15. Tan Y, Wang YD, Li Q, Xing XK, Niu SB, Sun BD, et al. Undescribed diphenyl ethers betaethrins A–I from a desert plant endophytic strain of the fungus Phoma betae A.B. Frank (Didymellaceae). Phytochemistry 2021;201:113264.

    Article  Google Scholar 

  16. Gubiani JR, Wijeratne EMK, Shi T, Arauji AR, Arnold AE, Chapman E, et al. An epigenetic modifier induces production of (10’S)-verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorg Med Chem. 2017;25:1860–6.

    Article  CAS  Google Scholar 

  17. Cimmino A, Andolfi A, Zonno MC, Avolio F, Berestetskiy A, Vurro M, et al. Chenopodolans A–C: phytotoxic furopyrans produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemsitry. 2013;96:208–13.

    Article  CAS  Google Scholar 

  18. Zhang D, Wang Y, Hu X, Wang X, Li L, Gu G, et al. Cyclic and linear thiopeptides from soil-derived Streptomyces sp. CPCC 203702 with antiviral and antibacterial activities. Chin J Chem. 2021;39:3277–84.

    Article  CAS  Google Scholar 

  19. Gu G, Zhang T, Zhao J, Zhao W, Tang Y, Wang L, et al. New dimeric chromanone derivatives from the mutant strains of Penicillium oxalicum and their bioactivities. RSC Adv. 2022;12:22377–84.

    Article  CAS  Google Scholar 

  20. Wang L, Huang Y, Zhang L, Liu Z, Liu W, Xu H, et al. Structures and absolute configurations of phomalones from the coral-associated fungus Parengyodontium album sp. SCSIO 40430. Org Biomol Chem. 2021;19:6030–7.

    Article  CAS  Google Scholar 

  21. Chandler IM, Mclntyre CR, Simpson TJ. Biosynthesis of LL-D253α, a polyketide chromanone metabolite of Phoma pigmentivora: incorporation of 13C, 2H and l8O labelled precursors. J Chem Soc Perkin Trans 1992;18:2285–93.

    Article  Google Scholar 

  22. McGahren WJ, Ellestad GA, Morton GO, Kunstmann MP. Structure of a new fungal lactone, LL-P880, from an unidentified Penicillium sp. J Org Chem. 1972;37:1636–9.

    Article  CAS  Google Scholar 

  23. Kim JW, Ko W, Kim E, Kim GS, Hwang GJ, Son S, et al. Anti-inflammatory phomalichenones from an endolichenic fungus Phoma sp. J Antibiot. 2018;71:753–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (82073744), CAMS Innovation Fund for Medical Sciences (2021-I2M-1-055), the Non-profit Central Research Institute Fund of CAMS (2021-PT350-001), and the National Microbial Resource Center (NMRC-2021-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyan Yu or Dewu Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Gu, G., Wang, J. et al. Four new chromone derivatives from the Arctic fungus Phoma muscivora CPCC 401424 and their antiviral activities. J Antibiot 76, 88–92 (2023). https://doi.org/10.1038/s41429-022-00588-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00588-6

Search

Quick links