Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Article
  • Published:

The potent protein phosphatase 2A inhibitors aminocytostatins: new derivatives of cytostatin

Abstract

Specific inhibitors of protein phosphatase 2A (PP2A) mediate anticancer effects by augmenting the tumor-killing activity of natural killer (NK) cells. In this study, new PP2A inhibitors, aminocytostatins A–E, were isolated from Kitasatospora sp. MJ654-NF4 and structurally characterized. Aminocytostatins are derivatives of cytostatin, which is a specific PP2A inhibitor isolated from the same organism, and aminocytostatins have a characteristic amino group within the lactone moiety. Compared to cytostatin, aminocytostatin A showed a stronger inhibitory activity against PP2A in vitro and augmented the tumor-killing activity of NK cells in vivo. Furthermore, a docking model was generated to demonstrate the favorable activities of aminocytostatin A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brautigan DL. Protein Ser/Thr phosphatases-the ugly ducklings of cell signalling. FEBS J. 2013;280:324–45.

    Article  CAS  Google Scholar 

  2. Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell 2009;139:468–84.

    Article  CAS  Google Scholar 

  3. Baskaran R, Velmurugan BK. Protein phosphatase 2A as therapeutic targets in various disease models. Life Sci. 2018;210:40–46.

    Article  CAS  Google Scholar 

  4. Lewy DS, Gauss CM, Soenen DR, Boger DL. Fostriecin: chemistry and biology. Curr Med Chem. 2002;9:2005–32.

    Article  CAS  Google Scholar 

  5. Kawada M, Kawatsu M, Masuda T, Ohba S, Amemiya M, Kohama T et al. Specific inhibitors of protein phosphatase 2A inhibit tumor metastasis through augmentation of natural killer cells. Int Immunopharmacol. 2003;3:179–88.

    Article  CAS  Google Scholar 

  6. Wada S, Usami I, Umezawa Y, Inoue H, Ohba S, Someno T et al. Rubratoxin A specifically and potently inhibits protein phosphatase 2A and suppresses cancer metastasis. Cancer Sci. 2010;101:743–50.

    Article  CAS  Google Scholar 

  7. Amemiya M, Ueno M, Osono M, Masuda T, Kinoshita N, Nishida C. et al. Cytostatin, a novel inhibitor of cell adhesion to components of extracellular matrix produced by Streptomyces sp. MJ654-NF4. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot. 1994;47:536–40.

    Article  CAS  Google Scholar 

  8. Amemiya M, Someno T, Sawa R, Naganawa H, Ishizuka M, Takeuchi T. Cytostatin, a novel inhibitor of cell adhesion to components of extracellular matrix produced by Streptomyces sp. MJ654-NF4. II. Physico-chemical properties and structure determination. J Antibiot. 1994;47:541–4.

    Article  CAS  Google Scholar 

  9. Lawhorn BG, Boga SB, Wolkenberg SE, Colby DA, Gauss CM, Swingle MR et al. Total synthesis and evaluation of cytostatin, its C10-C11 diastereomers, and additional key analogues: impact on PP2A inhibition. J Am Chem Soc. 2006;128:16720–32.

    Article  CAS  Google Scholar 

  10. Teruya T, Simizu S, Kanoh N, Osada H. Phoslactomycin targets cysteine-269 of the protein phosphatase 2A catalytic subunit in cells. FEBS Lett. 2005;579:2463–8.

    Article  CAS  Google Scholar 

  11. Kawada M, Amemiya M, Ishizuka M, Takeuchi T. Cytostatin, an inhibitor of cell adhesion to extracellular matrix, selectively inhibits protein phosphatase 2A. Biochim Biophys Acta. 1999;1452:209–17.

    Article  CAS  Google Scholar 

  12. Swingle MR, Amable L, Lawhorn BG, Buck SB, Burke CP, Ratti P et al. Structure-activity relationship studies of fostriecin, cytostatin, and key analogs, with PP1, PP2A, PP5, and (beta12-beta13)-chimeras (PP1/PP2A and PP5/PP2A), provide further insight into the inhibitory actions of fostriecin family inhibitors. J Pharm Exp Ther. 2009;331:45–53.

    Article  CAS  Google Scholar 

  13. Wu G, Robertson DH, Brooks CL 3rd, Vieth M. Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem. 2003;24:1549–62.

    Article  CAS  Google Scholar 

  14. Muegge I. PMF scoring revisited. J Med Chem. 2006;49:5895–902.

    Article  CAS  Google Scholar 

  15. Brooks BR, et al. CHARMM: The Biomolecular simulation Program. J Comp Chem. 2009;30:1545–615.

    Article  CAS  Google Scholar 

  16. Rasmussen KJ, Engelsen SB, Fabricius J, Rasmussen B. The Consistent Force Field: Development of Potential Energy Functions for Conformational Analysis. In: Fausto R, (eds). Recent Experimental and Computational Advances in Molecular Spectroscopy. NATO ASI Series (Series C: Mathematical and Physical Sciences). 406. Dordrecht: Springer; 1993.

    Google Scholar 

  17. Im W, Lee MS, Brooks CL 3rd. Generalized born model with a simple smoothing function. J Comp Chem. 2003;24:1691–702.

    Article  CAS  Google Scholar 

  18. Phillips JC, et al. Scalable molecular dynamics with NAMD. J Comp Chem. 2005;26:1781–802.

    Article  CAS  Google Scholar 

  19. Lilkova E, et al. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger; 2015.

  20. Hansen PE. Isotope effects in nuclear shielding. Prog NMR Spectrosc. 1988;20:207–55.

    Article  CAS  Google Scholar 

  21. Fotso S, Graupner P, Xiong Q, Hahn D, Avila-Adame C, Davis G. Phoslactomycins from Streptomyces sp. MLA1839 and their biological activities. J Nat Prod. 2013;76:1509–13.

    Article  CAS  Google Scholar 

  22. Burgi HB, Dunitz JD, Shefter E. Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. J Am Chem Soc. 1973;95:5065–7.

    Article  CAS  Google Scholar 

  23. Burgi HB, Dunitz JD, Lehn JM, Wipff G. Stereochemistry of reaction paths at carbonyl centres. Tetrahedron. 1974;30:1563–72.

    Article  Google Scholar 

  24. Heathcock CH, Flippin LA. Acyclic stereoselection. 16. High diastereofacial selectivity in Lewis acid mediated additions of enol silanes to chiral aldehydes. J Am Chem Soc. 1983;105:1667–8.

    Article  CAS  Google Scholar 

  25. Lodge EP, Heathcock CH. Acyclic stereoselection. 40. Steric effects, as well as.sigma.*-orbital energies, are important in diastereoface differentiation in additions to chiral aldehydes. J Am Chem Soc. 1987;109:3353–61.

    Article  CAS  Google Scholar 

  26. Kong R, Liu X, Su C, Ma C, Qiu R, Tang L. Elucidation of the biosynthetic gene cluster and the post-PKS modification mechanism for fostriecin in Streptomyces pulveraceus. Chem Biol. 2013;20:45–54.

    Article  Google Scholar 

  27. Liu XJ, Kong RX, Niu MS, Qiu RG, Tang L. Identification of the post-polyketide synthase modification enzymes for fostriecin biosynthesis in Streptomyces pulveraceus. J Nat Prod. 2013;76:524–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. K. Iijima, Ms. Y. Takahashi, and Ms. Y. Kubota (Microbial Chemistry Research Center) for the MS and NMR measurements. We also thank Ms. C. Hayashi for the bioassays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehiro Tohyama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tohyama, S., Kawada, M., Muramatsu, H. et al. The potent protein phosphatase 2A inhibitors aminocytostatins: new derivatives of cytostatin. J Antibiot 74, 743–751 (2021). https://doi.org/10.1038/s41429-021-00455-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00455-w

Search

Quick links