Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

TMKS8A, an antibacterial and cytotoxic chlorinated α-lapachone, from a sea slug-derived actinomycete of the genus Streptomyces

Abstract

TMKS8A (1), a new chlorinated α-lapachone derivative, along with five known related metabolites, A80915 C (2), SF2415B1 (3), chlorinated dihydroquinone 3 (4), SF2415B3 (5), and A80915 C (6), were identified from the culture extract of Streptomyces sp. TMKS8, which was isolated from a sea slug, Paromoionchis tumidus. The structure of 1 was determined by the analysis of NMR and MS spectral data, assisted by NMR chemical shift prediction using DFT-based calculation. The absolute configuration was determined to be R by comparison of experimental and calculated ECD spectra. Compound 1 displayed antimicrobial activity against Gram-positive bacteria with MIC values ranging from 6.25 to 12.5 μg ml−1 and cytotoxicity against murine leukemia P388 cells with IC50 9.8 μM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Pereira F. Have marine natural product drug discovery efforts been productive and how can we improve their efficiency? Expert Opin Drug Discov. 2019;14:717–22.

    Article  Google Scholar 

  2. Wiese J, Imhoff JF. Marine bacteria and fungi as promising source for new antibiotics. Drug Dev Res. 2019;80:24–7.

    Article  CAS  Google Scholar 

  3. Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2018;35:8–53.

    Article  CAS  Google Scholar 

  4. Sibero MT, et al. Two new aromatic polyketides from a sponge-derived Fusarium. Beilstein J Org Chem. 2019;15:2941–7.

    Article  CAS  Google Scholar 

  5. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2019;36:122–73.

    Article  CAS  Google Scholar 

  6. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2020;37:175–223.

    Article  Google Scholar 

  7. Silva TR, et al. Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol. 2018;41:1505–19.

    Article  Google Scholar 

  8. Sharma AR, Zhou T, Harunari E, Oku N, Trianto A, Igarashi Y. Labrenzbactin from a coral-associated bacterium Labrenzia sp. J Antibiot. 2019;72:634–9.

    Article  Google Scholar 

  9. Wu SM, Liu G, Zhou SN, Sha ZX, Sun CM. Characterization of antifungal lipopeptide biosurfactants produced by marine bacterium Bacillus sp. CS30. Mar Drugs. 2019;17:199.

    Article  CAS  Google Scholar 

  10. Zhang ZW, Zhou T, Harunari E, Oku N, Igarashi Y, Iseolides A–C. antifungal macrolides from a coral-derived actinomycete of the genus Streptomyces. J Antibiot. 2020;73:534–41.

    Article  CAS  Google Scholar 

  11. Wang E, Sorolla MA, Krishnan PDG, Sorolla A. From seabed to bedside: a review on promising marine anticancer compounds. Biomolecules. 2020;10:248.

    Article  Google Scholar 

  12. Indraningrat AAG, Smidt H, Sipkema D. Bioprospecting sponge-associated microbes for antimicrobial compounds. Mar Drugs. 2016;14:87.

    Article  Google Scholar 

  13. Adnan M, Alshammari E, Patel M, Ashraf SA, Khan S, Hadi S. Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry. PeerJ. 2018;6:e5049.

    Article  Google Scholar 

  14. Fenical W. Marine microbial natural products: the evolution of a new field of science. J Antibiot. 2020;7:481–7.

    Article  Google Scholar 

  15. Cristianawati O, et al. Screening of antibacterial activity of seagrass-associated bacteria from the North Java Sea, Indonesia against multidrug-resistant bacteria. AACL Bioflux. 2019;12:1054–64.

    Google Scholar 

  16. Ayuningrum D, et al. Tunicate-associated bacteria show a great potential for the discovery of antimicrobial compounds. PLoS One. 2019;14:e0213797.

    Article  CAS  Google Scholar 

  17. Kristiana R, et al. Antibacterial potential of nudibranch-associated bacteria from Saparua and Nusa Laut Islands, Indonesia. Biodiversitas. 2019;20:1811–9.

    Article  Google Scholar 

  18. Sibero MT, et al. Antibacterial activity of Indonesian sponge-associated fungi against clinical pathogenic multidrug-resistant bacteria. J Appl Pharm Sci. 2018;8:088–94.

    CAS  Google Scholar 

  19. Hanif N, Murni A, Tanaka C, Tanaka J. Marine natural products from Indonesian waters. Mar Drugs. 2019;17:364.

    Article  CAS  Google Scholar 

  20. Tanaka J. How can we develop marine natural products chemistry in Indonesia? J Phys Conf Ser. 2020;1460:012079.

    Article  CAS  Google Scholar 

  21. Sabdaningsih A, et al. A new citrinin derivative from the Indonesian marine aponge-associated fungus Penicillium citrinum. Mar Drugs. 2020;18:227.

    Article  CAS  Google Scholar 

  22. Sibero MT, et al. Sponge-associated fungi from a mangrove habitatin Indonesia: species composition, antimicrobial activity, enzyme screening and bioactive profiling. Int Aquat Res. 2019;11:173–86.

    Article  Google Scholar 

  23. Sibero MT, et al. Chromanone-type compounds from marine sponge-derived Daldinia eschscholtzii KJMT FP 4.1. J Appl Pharm Sci. 2020;10:1–7.

    CAS  Google Scholar 

  24. Farnaes L, et al. Napyradiomycin derivatives, produced by a marine-derived actinomycete, illustrate cytotoxicity by induction of apoptosis. J Nat Prod. 2014;77:15–21.

    Article  CAS  Google Scholar 

  25. Motohashi K, Sue M, Furihata K, Ito S, Seto H. Terpenoids produced by actinomycetes: napyradiomycins from Streptomyces antimycoticus NT17. J Nat Prod. 2008;71:595–601.

    Article  CAS  Google Scholar 

  26. Cheng YB, Jensen PR, Fenical W. Cytotoxic and antimicrobial napyradiomycins from two marine-derived Streptomyces strains. Eur J Org Chem. 2013;3751–7.

  27. Lodewyk MW, Siebert MR, Tantillo DJ. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev. 2012;112:1839–62.

    Article  CAS  Google Scholar 

  28. Wu ZC, et al. Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar Drugs. 2013;11:2113–25.

    Article  Google Scholar 

  29. MacroModel, Schrödinger, LLC: New York, NY, 2020.

  30. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2016.

  31. Karim MRU, Harunari E, Oku N, Akasaka K, Igarashi Y. Bulbimidazoles A-C antimicrobial and cytotoxic alkanoyl imidazoles from a marine gammaproteobacterium Microbulbifer species. J Nat Prod.2020;83:1295–9.

    Article  Google Scholar 

  32. Sugimura N, Furuya A, Yatsu T, Shibue T. Application of density functional theory (DFT) and empirical scaling to practical prediction of 13C-NMR of (−)-napyradiomycin A1. Bunseki Kagaku. 2015;64:147–50.

    Article  CAS  Google Scholar 

  33. Shepherd ED, et al. Structure determination of a chloroenyne from Laurencia majuscula using computational methods and total synthesis. J Org Chem. 2019;84:4971–91.

    Article  CAS  Google Scholar 

  34. Braddock DC, Rzepa HS. Structural reassignment of obtusallenes V, VI, and VII by GIAO-based density functional prediction. J Nat Prod. 2008;71:728–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P388 cells were obtained from JCRB Cell Bank under an accession code JCRB0017 (Lot. 06252002). We thank Mr. Tatsuya Matsui and Mr. Yiwei Ge at Toyama Prefectural University for cytotoxicity assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Sibero, M.T., Kai, A. et al. TMKS8A, an antibacterial and cytotoxic chlorinated α-lapachone, from a sea slug-derived actinomycete of the genus Streptomyces. J Antibiot 74, 464–469 (2021). https://doi.org/10.1038/s41429-021-00415-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00415-4

Search

Quick links