Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibiofilm activities of ceragenins and antimicrobial peptides against fungal-bacterial mono and multispecies biofilms

Abstract

Multispecies biofilms, in which both fungus and bacteria species can be present, play a significant role in persistent infections, and new therapeutic options are needed against them. In this study, the activities of ceragenins and antimicrobial peptides (AMPs) (magainin, cecropin A, LL-37) were investigated against multispecies biofilms formed by Candida albicans and four clinically important Gram-negative bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae. Our results show that CSA-13 and CSA-90 were the most effective agents against both mono and multispecies biofilms (Pā€‰<ā€‰0.05). CSA-131 and CSA-192 showed the least antimicrobial activity against mono and fungal-bacterial multispecies biofilms. Inhibition of multispecies biofilms with CSA-13 and CSA-90 was also confirmed through fluorescence microscopy images. When AMPs evaluated alone, they proved ineffective against both C. albicans and Gram-negative bacteria at the concentrations tested. In these studies, ceragenins were much more effective than AMPs against multi or monospecies biofilms, especially those containing C. albicans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rajendran R, Sherry L, Nile CJ, Sherriff A, Johnson EM, Hanson MF, Williams C, Munro CA, Jones BJ, Ramage G. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infectionā€”Scotland, 2012ā€“2013. Clin Microbiol Infect. 2016;22:87ā€“93.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Arzmi MH, Dashper S, McCullough M. Polymicrobial interactions of Candida albicans and its role in oral carcinogenesis. J Oral Pathol Med. 2019;48:546ā€“51.

    PubMedĀ  Google ScholarĀ 

  3. Esher SK, Fidel PL, Noverr MC. Candida/Staphylococcal polymicrobial intra-abdominal infection: pathogenesis and perspectives for a novel form of trained innate immunity. J Fungi. 2019;5:37.

    CASĀ  Google ScholarĀ 

  4. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 2016;18:310ā€“21.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Lopes SP, Azevedo NF, Pereira MO. Microbiome in cystic fibrosis: shaping polymicrobial interactions for advances in antibiotic therapy. Crit Rev Microbiol. 2015;41:353ā€“65.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69:71ā€“92.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Rodrigues ME, Lopes SP, Pereira CR, Azevedo NF, LourenƧo A, Henriques M, Pereira MO. Polymicrobial ventilator-associated pneumonia: fighting in vitro Candida albicans-Pseudomonas aeruginosa biofilms with antifungal-antibacterial combination therapy. PLoS ONE. 2017;12:e0170433.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Harriott MM, Noverr MC. Importance of Candidaā€“bacterial polymicrobial biofilms in disease. Trends Microbiol. 2011;19:557ā€“63.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Fourie R, Pohl CH. Beyond antagonism: the interaction between Candida species and Pseudomonas aeruginosa. J Fungi. 2019;5:34.

    CASĀ  Google ScholarĀ 

  10. Hirota K, Yumoto H, Sapaar B, Matsuo T, Ichikawa T, Miyake Y. Pathogenic factors in Candida biofilmā€related infectious diseases. J Appl Microbiol. 2017;122:321ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC Jr, Mylonakis E. Prokaryoteā€“eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci USA. 2008;105:14585ā€“90.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Elā€Azizi MA, Starks SE, Khardori N. Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms. J Appl Microbiol. 2004;96:1067ā€“73.

    PubMedĀ  Google ScholarĀ 

  13. Hager CL, Isham N, Schrom KP, Chandra J, McCormick T, Miyagi M, Ghannoum MA. Effects of a novel probiotic combination on pathogenic bacterial-fungal polymicrobial biofilms. mBio. 2019;10:e00338ā€“19.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Vuotto C, Longo F, Balice M, Donelli G, Varaldo P. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens. 2014;3:743ā€“58.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15:740.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Ghosh S, Joseph G, Korza G, He L, Yuan JH, Dong W, Setlow B, Li YQ, Savage PB, Setlow P. Effects of the microbicide ceragenin CSAā€13 on and properties of Bacillus subtilis spores prepared on two very different media. J Appl Microbiol. 2019;127:109ā€“20.

    CASĀ  PubMedĀ  Google ScholarĀ 

  17. Hacioğlu M, Hacıosmanoğlu E, Birteksƶz Tan AS, Bozkurt Guzel Ƈ, Savage P. Effects of ceragenins and conventional antimicrobials on Candida albicans and Staphylococcus aureus mono and multispecies biofilms. Diagn Microbiol Infect Dis. 2019;95:114863. https://doi.org/10.1016/j.diagmicrobio.2019.06.014.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Hashemi M, Holden B, Taylor M, Wilson J, Coburn J, Hilton B, Nance T, Gubler S, Genberg C, Deng S, Savage PB. Antibacterial and antifungal activities of poloxamer micelles containing ceragenin CSA-131 on ciliated tissues. Molecules. 2018;23:596.

    PubMed CentralĀ  Google ScholarĀ 

  19. Hashemi M, Mmuoegbulam A, Holden B, Coburn J, Wilson J, Taylor MF, Reiley J, Baradaran D, Stenquist T, Deng S, Savage PB. Susceptibility of multidrug-resistant bacteria, isolated from water and plants in Nigeria, to Ceragenins. Int J Environ Res Public Health. 2018;15:2758.

    CASĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Wnorowska U, Piktel E, Durnaś B, Fiedoruk K, Savage PB, Bucki R. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect Dis. 2019;19:369.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Durnaś B, Wnorowska U, Pogoda K, Deptuła P, Wątek M, Piktel E, et al. Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS ONE. 2016;11:e0157242.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Lai XZ, Feng Y, Pollard J, Chin JN, Rybak MJ, Bucki R, et al. Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc Chem Res. 2008;41:1233ā€“40.

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Peters BM, Ward RM, Rane HS, Lee SA, Noverr MC. Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob Agents Chemother. 2013;57:74ā€“82.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Nagant C, Pitts B, Stewart PS, Feng Y, Savage PB, Dehaye JP. Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed by Pseudomonas aeruginosa. Microbiologyopen. 2013;2:318ā€“25.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Tavernier S, CrabbƩ A, Hacioglu M, Stuer L, Henry S, Rigole P, et al. Community composition determines activity of antibiotics against multispecies biofilms. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.00302-17.

  26. Li CS, Chia WC, Chen PS. Fluorochrome and flow cytometry to monitor microorganisms in treated hospital wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007;42:195ā€“203.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Bektaş M, Hacıosmanoğlu E, Ozerman B, Varol B, Nurten R, Bermek E. On diphtheria toxin fragment A release into the cytosolā€“cytochalasin D effect and involvement of actin filaments and eukaryotic elongation factor 2. Int J Biochem Cell Biol. 2011;43:1365ā€“72. https://doi.org/10.1016/j.biocel.2011.05.017.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Bozkurt-Guzel C, Hacioglu M, Savage PB. Investigation of the in vitro antifungal and antibiofilm activities of ceragenins CSA-8, CSA-13, CSA-44, CSA-131, and CSA-138 against Candida species. Diagn Microbiol Infect Dis. 2018a;91:324ā€“30. https://doi.org/10.1016/j.diagmicrobio.2018.03.014.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Moscoso M, Esteban-Torres M, MenƩndez M, Garcƭa E. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci. PLoS ONE. 2014;9:e101037. https://doi.org/10.1371/journal.pone.0101037.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Leszczynska K, Namiot D, Byfield FJ. Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. J Antimicrob Chemother. 2013;68:610ā€“18.

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. Olekson MA, You T, Savage PB, Leung KP. Antimicrobial ceragenins inhibit biofilms and affect mammalian cell viability and migration in vitro. FEBS Open Bio. 2017. https://doi.org/10.1002/2211-5463.12235.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Bozkurt-Guzel C, Oyardi O, B Savage P. Comparative in vitro antimicrobial activities of CSA-142 and CSA-192, second-generation ceragenins, with CSA-13 against various microorganisms. J Chemother. 2018b;30:332ā€“7. https://doi.org/10.1080/1120009X.2018.1534567.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Geitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 2019;19:54. https://doi.org/10.1186/s12866-019-1416-8.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014;62:32ā€“7. https://doi.org/10.1016/j.peptides.2014.09.021.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by the Research Fund of Istanbul University [project number TSA-2017-26191].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayram Hacioglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, M., Oyardi, O., Bozkurt-Guzel, C. et al. Antibiofilm activities of ceragenins and antimicrobial peptides against fungal-bacterial mono and multispecies biofilms. J Antibiot 73, 455ā€“462 (2020). https://doi.org/10.1038/s41429-020-0299-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0299-0

This article is cited by

Search

Quick links