Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Note
  • Published:

Surface zeta potential and protein adsorption on the coating surface of a heteroarm star polymer with a controlled hydrophilic/hydrophobic arm ratio

Abstract

A surface coated with a star polymer is believed to form a highly dense polymer brush-like architecture and inhibit biofouling. In this study, the surface properties of the star polymer coating were evaluated with their resistance to protein adsorption and surface zeta (ζ)-potential to clarify the mechanism for inhibition of cell adhesion. The surface of the star polymer coating with a high density of poly(2-hydroxyethyl methacrylate) (PHEMA) formed an electrically neutral diffuse brush structure in water and showed high resistance to protein adsorption. Considering the data obtained in the study, the surface ζ-potential and antibiofouling properties were correlated by controlling the molecular architecture of the coating material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25:5681–703.

    Article  CAS  PubMed  Google Scholar 

  2. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–53.

    Article  CAS  PubMed  Google Scholar 

  3. Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, et al. Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed. 2014;53:8004–31.

    Article  CAS  Google Scholar 

  4. Smith SA, Travers RJ, Morrissey JH. How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol. 2015;50:326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishihara K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res Part A. 2019;107:933–43.

    Article  CAS  Google Scholar 

  6. Tanaka M, Kobayashi S, Murakami D, Aratsu F, Kashiwazaki A, Hoshiba T, et al. Design of polymeric biomaterials: the “intermediate water concept. Bull Chem Soc Jpn. 2019;92:2043–57.

    Article  CAS  Google Scholar 

  7. Totani M, Liu L, Matsuno H, Tanaka K. Design of a star-like hyperbranched polymer having hydrophilic arms for anti-biofouling coating. J Mater Chem B. 2019;7:1045–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hong JH, Totani M, Kawaguchi D, Yamada NL, Matsuno H, Tanaka K. Poly[oligo(2-ethyl-2-oxazoline) methacrylate] as a surface modifier for bioinertness. Polym J.2021;53:643–53.

    Article  CAS  Google Scholar 

  9. Yoshikawa C, Goto A, Tsujii Y, Fukuda T, Kimura T, Yamamoto K, et al. Protein repellency of well-defined, concentrated poly(2-hydroxyethyl methacrylate) brushes by the size-exclusion effect. Macromolecules. 2006;39:2284–90.

    Article  CAS  Google Scholar 

  10. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3:829–36.

    Article  CAS  PubMed  Google Scholar 

  11. Dhingra S, Sharma S, Saha S. Infection resistant surface coatings by polymer brushes: strategies to construct and applications. ACS Appl Bio Mater. 2022;5:1364–90.

    Article  CAS  PubMed  Google Scholar 

  12. Higaki Y, Kobayashi M, Murakami D, Takahara A. Anti-fouling behavior of polymer brush immobilized surfaces. Polym J. 2016;48:325–31.

    Article  CAS  Google Scholar 

  13. Yokoyama H. New developments in polymer brush fabrication: concepts and physical properties of dynamic polymer brushes. Polym J. 2023;55:735–42.

    Article  CAS  Google Scholar 

  14. Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization. Chem Rev. 2001;101:3689–746.

    Article  CAS  PubMed  Google Scholar 

  15. Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization: discovery and developments. Chem Rec. 2004;4:159–75.

    Article  CAS  PubMed  Google Scholar 

  16. Braunecker WA, Matyjaszewski K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci. 2007;32:93–146.

    Article  CAS  Google Scholar 

  17. Kamigaito M. Evolutions of precision radical polymerizations from metal-catalyzed radical addition: living polymerization, step-growth polymerization, and monomer sequence control. Polym J. 2022;54:1391–405.

    Article  CAS  Google Scholar 

  18. Ando T, Yamaguchi K, Ajiro H. Thermoresponsive star-shaped polymer with heteroarm type with methacrylates: Preparation by living radical polymerization method and its topological effect. Polym Chem. 2023;14:1027–35.

    Article  CAS  Google Scholar 

  19. Kanazawa T, Nishikawa T, Ouchi M. Raft polymerization of isopropenyl boronate pinacol ester and subsequent terminal olefination: Precise synthesis of poly(alkenyl boronate)s and evaluation of their thermal properties. Polym J. 2021;53:1167–74.

    Article  CAS  Google Scholar 

  20. Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev. 2009;109:4963–5050.

    Article  CAS  PubMed  Google Scholar 

  21. Fukui Y, Fukui A, Fujimoto K. Preparation of a deformable nanocapsule by living radical polymerization in a liposome. Polym J. 2022;54:893–901.

    Article  CAS  Google Scholar 

  22. Seto H, Yasunaga M, Mawatari N, Hirohashi Y, Yao S, Shinto H. Formation of a glyco-functionalized interface on polyethylene using a side-chain crystalline block copolymer with epoxide. Polym J. 2022;54:1103–9.

    Article  CAS  Google Scholar 

  23. Kadokawa JI. 8 - surface derivatization and grafting on self-assembled chitin nanofibers for modification, functionalization, and application. In: Shahzad A, Tanasa F, Teaca CA. editors. Woodhead Publishing; 2022. 187–202.

  24. Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards next generation polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci. 2023;139:101657.

    Article  CAS  Google Scholar 

  25. Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, et al. Star polymers. Chem Rev. 2016;116:6743–836.

    Article  CAS  PubMed  Google Scholar 

  26. Totani M, Ando T, Terada K, Terashima T, Kim IY, Ohtsuki C, et al. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion. Biomater Sci. 2014;2:1172–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishihara K, Inoue Y, Kyomoto M. Surface modification on poly(ether ether ketone) with phospholipid polymer via photoinduced self-initiated grafting. Macromol Symp. 2015;354:230–6.

    Article  CAS  Google Scholar 

  28. Sauerbrey G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z für Phys. 1959;155:206–22.

    Article  CAS  Google Scholar 

  29. Ward MD, Buttry DA. In situ interfacial mass detection with piezoelectric transducers. Science. 1990;249:1000–7.

    Article  CAS  PubMed  Google Scholar 

  30. Fang Y, Xu W, Meng XL, Ye XY, Wu J, Xu ZK. Poly(2-hydroxyethyl methacrylate) brush surface for specific and oriented adsorption of glycosidases. Langmuir. 2012;28:13318–24.

    Article  CAS  PubMed  Google Scholar 

  31. Kirby BJ, Hasselbrink EF Jr. Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis. 2004;25:203–13.

    Article  CAS  PubMed  Google Scholar 

  32. Harkes G, Feijen J, Dankert J. Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in charge and hydrophobicity. Biomaterials. 1991;12:853–60.

    Article  CAS  PubMed  Google Scholar 

  33. Uematsu Y, Bonthuis DJ, Netz RR. Nanomolar surface-active charged impurities account for the zeta potential of hydrophobic surfaces. Langmuir. 2020;36:3645–58.

    Article  CAS  PubMed  Google Scholar 

  34. Falahati H, Wong L, Davarpanah L, Garg A, Schmitz P, Barz DPJ. The zeta potential of PMMA in contact with electrolytes of various conditions: theoretical and experimental investigation. Electrophoresis. 2014;35:870–82.

    Article  CAS  PubMed  Google Scholar 

  35. Hotze EM, Louie SM, Lin S, Wiesner MR, Lowry GV. Nanoparticle core properties affect attachment of macromolecule-coated nanoparticles to silica surfaces. Environ Chem. 2014;11:257–67.

  36. de Gennes PG. Conformations of polymers attached to an interface. Macromolecules. 1980;13:1069–75.

    Article  Google Scholar 

  37. Nagase K, Ishii S, Ikeda K, Yamada S, Ichikawa D, Akimoto AM, et al. Antibody drug separation using thermoresponsive anionic polymer brush modified beads with optimised electrostatic and hydrophobic interactions. Sci Rep. 2020;10:11896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hartvig RA, van de Weert M, Østergaard J, Jorgensen L, Jensen H. Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation. Langmuir. 2011;27:2634–43.

    Article  CAS  PubMed  Google Scholar 

  39. Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD. Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation. Colloids Surf B Biointerfaces. 2006;50:1–8.

    Article  CAS  PubMed  Google Scholar 

  40. Son HS, Kim KH, Song JH, Lee W, Kim JH, Yoon KH, et al. Enhanced shear thickening of polystyrene-poly(acrylamide) and polystyrene-poly(hema) particles. Colloid Polym Sci. 2019;297:95–105.

    Article  CAS  Google Scholar 

  41. Inoue Y, Onodera Y, Ishihara K. Initial cell adhesion onto a phospholipid polymer brush surface modified with a terminal cell adhesion peptide. ACS Appl Mater Interfaces. 2018;10:15250–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kyomoto M, Shobuike T, Moro T, Yamane S, Takatori Y, Tanaka S, et al. Prevention of bacterial adhesion and biofilm formation on a vitamin e-blended, cross-linked polyethylene surface with a poly(2-methacryloyloxyethyl phosphorylcholine) layer. Acta Biomater. 2015;24:24–34.

    Article  CAS  PubMed  Google Scholar 

  43. Nagasawa D, Azuma T, Noguchi H, Uosaki K, Takai M. Role of interfacial water in protein adsorption onto polymer brushes as studied by SFG spectroscopy and QCM. J Phys Chem C. 2015;119:17193–201.

    Article  CAS  Google Scholar 

  44. Taneda H, Yamada NL, Nemoto F, Minagawa Y, Matsuno H, Tanaka K. Modification of a polymer surface by partial swelling using nonsolvents. Langmuir. 2021;37:14941–9.

    Article  CAS  PubMed  Google Scholar 

  45. Hong JH, Totani M, Yamamoto T, Dietrich PM, Thissen A, Matsuno H, et al. Near-ambient pressure x-ray photoelectron spectroscopy for a bioinert polymer film at a water interface. Polym J. 2021;53:907–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for JSPS KAKENHI Grants-in Aid for Scientific Research (C) (JP19K05583 and JP23K04839) (TA), (21K14684 and 23K04866) (MT) and (21K05170) (JK). This work was supported by JST A-STEP Grant Number JPMJTM18BQ, Japan (TA). We would also like to thank Prof. Jun-ichi Kikuchi and Assoc. Prof. Kazuma Yasuhara at the Nara Institute of Science and Technology (NAIST) for the use of the QCM-D, ELSZ-1000, and helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, TA and MT; methodology, TA and MT; data curation, MT; formal analysis, MT, and TA.; writing – original draft, TA and MT; writing – reviewing and editing, TA, MT, HA, JK and MT All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tsuyoshi Ando.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Totani, M., Ajiro, H., Kadokawa, Ji. et al. Surface zeta potential and protein adsorption on the coating surface of a heteroarm star polymer with a controlled hydrophilic/hydrophobic arm ratio. Polym J (2024). https://doi.org/10.1038/s41428-024-00911-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00911-y

Search

Quick links