Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Rapid Communication
  • Published:

Role of the nucleating agent masterbatch carrier resin in the nonisothermal crystallization kinetics of polypropylene

Abstract

The effect of the nucleating agent masterbatch carrier resin on the nonisothermal crystallization of a pipe-grade polypropylene block copolymer was investigated at three different cooling rates using differential scanning calorimetry (DSC). Bis(3,4-dimethylibenzylidene) sorbitol (DMDBS), a well-known, third-generation sorbitol derivative, was used as a nucleating agent in this study. Crystallization kinetic parameters obtained from DSC cooling curves showed that incorporation of a nucleating agent by means of a masterbatch increased the crystallization rate by approximately two times compared to that of the sample with the same concentration of nucleating agent without the use of a masterbatch. The differences in nonisothermal kinetic parameters seemed to increase in significance with decreasing cooling rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Meng X, Tong C, Xin Z, Gong W, Shi Y, Chen W, et al. “Promotion of zeolite as dispersion support for properties improvement of α nucleating agent in polypropylene”. J Polym Res. 2019;26:105. https://doi.org/10.1007/s10965-019-1757-x.

    Article  Google Scholar 

  2. de Menezes BRC, Campos TMB, do A. Montanheiro TL, Ribas RG, de S. Cividanes L, Thim GP. Non-isothermal crystallization kinetic of polyethylene/carbon nanotubes nanocomposites using an isoconversional method, J Composites Sci. 2019;3. https://doi.org/10.3390/jcs3010021.

  3. Pasquino R, Auriemma F, Rosa CD, Grizzuti N. “A rheological investigation of the crystallization kinetics of syndiotactic polypropylene of varying degree of tacticity”. Int Polym Process. 2018;33:381–6. https://doi.org/10.3139/217.3569.

    Article  CAS  Google Scholar 

  4. Boukettaya S, Seddique WA, Alawar A, Daly HB, Hammami A. “Cooling rate effects on the crystallization kinetics of polypropylene/date palm fiber composite materials”. Sci Eng Composite Mater. 2016;23:523–33. https://doi.org/10.1515/secm-2014-0324.

    Article  CAS  Google Scholar 

  5. Farahani M, Jahani Y. “An approach for prediction optimum crystallization conditions for formation of beta polypropylene by response surface methodology (RSM)”. Polym Test. 2021;93:106921. https://doi.org/10.1016/j.polymertesting.2020.106921.

    Article  CAS  Google Scholar 

  6. Zhang L, van Drongelen M, Alfonso GC, Peters G, “The effect of pressure pulses on isotactic polypropylene crystallization”. Eur Polymer J. 71, Jul. 2015, https://doi.org/10.1016/j.eurpolymj.2015.07.055.

  7. De Santis F, Pantani R. “Thermodynamic properties and crystallization kinetics of isotactic polypropylene under pressure”. AIP Conf Proc. 2019;2139:150001. https://doi.org/10.1063/1.5121688

    Article  CAS  Google Scholar 

  8. Guo L, Chen F, Zhou Y, Liu X, Xu W. “The influence of interface and thermal conductivity of filler on the nonisothermal crystallization kinetics of polypropylene/natural protein fiber composites”. Compos Part B: Eng. 2015;68:300–9. https://doi.org/10.1016/j.compositesb.2014.09.004.

    Article  CAS  Google Scholar 

  9. Koscher E, Fulchiron R. “Influence of shear on polypropylene crystallization: morphology development and kinetics”. Polymer. 2002;43:6931–42. https://doi.org/10.1016/S0032-3861(02)00628-6.

    Article  CAS  Google Scholar 

  10. Horváth F, Bihari L, Bodrogi D, Gombár T, Hilt B, Keszei B, et al. “Effect of N,N′-dicyclohexyldicarboxamide homologues on the crystallization and properties of isotactic polypropylene”. ACS Omega. 2021;6:9053–65. https://doi.org/10.1021/acsomega.1c00064.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Schawe JEK, Budde F, Alig I. “Nucleation activity at high supercooling: Sorbitol-type nucleating agents in polypropylene”. Polymer. 2018;153:587–96. https://doi.org/10.1016/j.polymer.2018.08.054.

    Article  CAS  Google Scholar 

  12. An Y, Wang S, Li R, Shi D, Gao Y, Song L. “Effect of different nucleating agent on crystallization kinetics and morphology of polypropylene”. e-Polym. 2019;19:32–39. https://doi.org/10.1515/epoly-2019-0005.

    Article  CAS  Google Scholar 

  13. Luo S, Wei L, Sun J, Huang A, Qin S, Lou H, et al. “Crystallization behavior and optical properties of isotactic polypropylene filled with α-nucleating agents of multilayered distribution”. RSC Adv. 2019;10:387–93. https://doi.org/10.1039/C9RA09485G.

    Article  PubMed  Google Scholar 

  14. Kourtidou D, Tarani E, Chrysafi I, Menyhard A, Bikiaris DN, Chrissafis K. “Non-isothermal crystallization kinetics of graphite-reinforced crosslinked high-density polyethylene composites”. J Therm Anal Calorim. 2020;142:1849–61. https://doi.org/10.1007/s10973-020-10085-3.

    Article  CAS  Google Scholar 

  15. Qiao Y, Jalali M, Yang Y, Chen Y, Wang S, Jiang Y, et al. “Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites”. J Mater Sci. 2021;56:3562–75. https://doi.org/10.1007/s10853-020-05328-5.

    Article  CAS  Google Scholar 

  16. Yu Y, Yu Y, Zeng F, Chen J, Kang J, Yang F, et al. “Isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites with different ordered structure”. Polym Int. 2018;67:1212–20. https://doi.org/10.1002/pi.5625.

    Article  CAS  Google Scholar 

  17. Simanke AG, de Azeredo AP, de Lemos C, Mauler RS. “Influence of nucleating agent on the crystallization kinetics and morphology of polypropylene”. Polímeros. 2016;26:152–60. https://doi.org/10.1590/0104-1428.2053.

    Article  CAS  Google Scholar 

  18. Liu Y, Zhang K, Fu G, He W, Qin S, Yu J. “Synergistic effect of aryl heterocyclic aluminum phosphate and sodium laurate on non-isothermal crystallization kinetics of isotactic polypropylene”. J Ther Composite Mat. 2015;30. https://doi.org/10.1177/0892705715610405.

  19. Layachi A, Makhlouf A, Frihi D, Satha H, Belaadi A, Séguéla R. “Non-isothermal crystallization kinetics and nucleation behavior of isotactic polypropylene composites with micro-talc”. J Therm Anal Calorim. 2019;138:1081–95. https://doi.org/10.1007/S10973-019-08262-0.

    Article  CAS  Google Scholar 

  20. Khoshkava V, Ghasemi H, Kamal MR. “Effect of cellulose nanocrystals (CNC) on isothermal crystallization kinetics of polypropylene”. Thermochim Acta. 2015;608:30–39. https://doi.org/10.1016/j.tca.2015.04.007.

    Article  CAS  Google Scholar 

  21. Bhattacharyya AR, Sreekumara TV, Liua T, Kumara S, Ericsonb LM, Haugeb RH, et al. “Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite”. Polymer. 2003;44:2373–7. https://doi.org/10.1016/S0032-3861(03)00073-9.

    Article  CAS  Google Scholar 

  22. Schawe JEK. “Influence of calcium carbonate and carbon nanotubes on the crystallization kinetics of polypropylene at high supercooling”. AIP Conf Proc. 2016;1713:070001. https://doi.org/10.1063/1.4942287.

    Article  Google Scholar 

  23. Schawe JEK, Pötschke P, Alig I. “Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: Carbon nanotubes in polypropylene”. Polymer. 2017;116:160–72. https://doi.org/10.1016/j.polymer.2017.03.072.

    Article  CAS  Google Scholar 

  24. Mucha M, Marszałek J, Fidrych A. “Crystallization of isotactic polypropylene containing carbon black as a filler”. Polymer. 2000;41:4137–42. https://doi.org/10.1016/S0032-3861(99)00706-5.

    Article  CAS  Google Scholar 

  25. Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P. “Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition”. Express Polym Lett. 2008;2:735–45. https://doi.org/10.3144/expresspolymlett.2008.87.

    Article  CAS  Google Scholar 

  26. Jain S, Goossens H, van Duin M, Lemstra P. “Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene”. Polymer. 2005;20:8805–18. https://doi.org/10.1016/j.polymer.2004.12.062.

    Article  Google Scholar 

  27. Jang GS, Cho W, Ha C. “Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent”. J Polymer Sci Part B: Polymer Phys. 2001. https://doi.org/10.1002/POLB.1077.

  28. Rasana N, Jayanarayanan K, Pegoretti A. “Non-isothermal crystallization kinetics of polypropylene/short glass fibre/multiwalled carbon nanotube composites”. RSC Adv. 2018;8:39127–39. https://doi.org/10.1039/C8RA07243D.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nohara L, Nohara E, Moura A, Gonçalves J, Rezende M. “Study of crystallization behavior of poly(phenylene sulfide)”, Polimeros-ciencia E Tecnologia - POLIMEROS. 2006;16. https://doi.org/10.1590/S0104-14282006000200009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Bagheri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokrollahi, M., Marouf, B.T. & Bagheri, R. Role of the nucleating agent masterbatch carrier resin in the nonisothermal crystallization kinetics of polypropylene. Polym J 54, 1127–1132 (2022). https://doi.org/10.1038/s41428-022-00665-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00665-5

Search

Quick links