Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A comprehensive study of the structure and piezoelectric response of biodegradable polyhydroxybutyrate-based films for tissue engineering applications

Abstract

The results of comprehensive research on the thermal behavior and molecular and crystalline structures of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV) films of different thicknesses, their molecular weights (Mw) and 3-hydroxyvalerate (3-HV) contents are reported. Increasing film thickness from 30 to 100 µm resulted in an isotropic crystal orientation, reducing the crystallite size of the orthorhombic α-phase in the b direction from 22 to 17 nm and increasing the degree of crystallinity of the PHB films without affecting their thermal behavior. Furthermore, despite resulting in the same degree of crystallinity and roughness, an ~8-fold decrease in PHB Mw from 803 kDa to 102 kDa resulted in a decreased number of piezoactive domains. The addition of 5.9% 3-HV resulted in anisotropy in the PHB crystalline structure and increased D(020) from 19 nm to 24 nm. Additionally, a further increase in the 3-HV content to 17.5% in the PHB-HV films led to a decrease in the melting temperature and a decrease in the degree of crystallinity from 57% to 23%, which resulted in the absence of local piezoresponse. Notably, the decrease in the Mw of PHB-HV (~17%) from 1177 kDa to 756 kDa resulted in an increase in the degree of crystallinity from 23% to 32%. Moreover, the PHB-HV films became smoother with increasing 3-HV content.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mohandas SP, Balan L, Gopi J, Anoop B, Mohan PS, Philip R, et al. Biocompatibility of polyhydroxybutyrate-co-hydroxyvalerate films generated from Bacillus cereus MCCB 281 for medical applications. Int J Biol Macromol. 2021;176:244–52.

    Article  CAS  PubMed  Google Scholar 

  2. Zhuikov V, Bonartsev A, Bagrov D, Yakovlev S, Myshkina V, Makhina T, et al. Mechanics and surface ultrastructure changes of poly (3-hydroxybutyrate) films during enzymatic degradation in pancreatic lipase solution. Mol Cryst Liq Cryst. 2017;648:236–43.

    Article  CAS  Google Scholar 

  3. Vieyra H, Juárez E, López UF, Morales AG, Torres M. Cytotoxicity and biocompatibility of biomaterials based in polyhydroxybutyrate reinforced with cellulose nanowhiskers determined in human peripheral leukocytes. Biomed Mater. 2018;13:045011.

    Article  PubMed  Google Scholar 

  4. Shishatskaya EI, Voinova ON, Goreva AV, Mogilnaya OA, Volova TG. Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2008;19:2493–502.

    Article  CAS  PubMed  Google Scholar 

  5. Altaee N, El-Hiti GA, Fahdil A, Sudesh K, Yousif E. Biodegradation of different formulations of polyhydroxybutyrate films in soil. SpringerPlus. 2016;5:1–12.

    Article  CAS  Google Scholar 

  6. Meischel M, Eichler J, Martinelli E, Karr U, Weigel J, Schmöller G, et al. Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications. J Mech Behav Biomed Mater. 2016;53:104–18.

    Article  CAS  PubMed  Google Scholar 

  7. Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018;23:362.

    Article  PubMed Central  Google Scholar 

  8. Zhuikov VA, Zhuikova YV, Makhina TK, Myshkina VL, Rusakov A, Useinov A, et al. Comparative structure-property characterization of poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) s films under hydrolytic and enzymatic degradation: Finding a transition point in 3-hydroxyvalerate content. Polymers. 2020;12:728.

    Article  CAS  PubMed Central  Google Scholar 

  9. Zviagin AS, Chernozem RV, Surmeneva MA, Pyeon M, Frank M, Ludwig T, et al. Enhanced piezoelectric response of hybrid biodegradable 3D poly (3-hydroxybutyrate) scaffolds coated with hydrothermally deposited ZnO for biomedical applications. Eur Polym J. 2019;117:272–9.

    Article  CAS  Google Scholar 

  10. Chernozem R, Guselnikova O, Surmeneva M, Postnikov P, Abalymov A, Parakhonskiy B, et al. Diazonium chemistry surface treatment of piezoelectric polyhydroxybutyrate scaffolds for enhanced osteoblastic cell growth, Eur. Polym J. 2020;20:100758.

    Google Scholar 

  11. Chernozem R, Surmeneva M, Shkarina S, Loza K, Epple M, Ulbricht M, et al. Piezoelectric 3-D fibrous poly (3-hydroxybutyrate)-based scaffolds ultrasound-mineralized with calcium carbonate for bone tissue engineering: inorganic phase formation, osteoblast cell adhesion, and proliferation. ACS Appl Mater Interfaces. 2019;11:19522–33.

    Article  CAS  PubMed  Google Scholar 

  12. Castellano D, Sanchis A, Blanes M, Pérez del Caz MD, Ruiz‐Saurí A, Piquer‐Gil M, et al. Electrospun poly (hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis. J Tissue Eng Regen Med. 2018;12:e983–94.

    Article  CAS  PubMed  Google Scholar 

  13. Castellano D, Blanes M, Marco B, Cerrada I, Ruiz-Saurí A, Pelacho B, et al. A comparison of electrospun polymers reveals poly (3-hydroxybutyrate) fiber as a superior scaffold for cardiac repair. Stem Cells Dev. 2014;23:1479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gorodzha SN, Muslimov AR, Syromotina DS, Timin AS, Tcvetkov NY, Lepik KV, et al. A comparison study between electrospun polycaprolactone and piezoelectric poly (3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Colloids Surf B. 2017;160:48–59.

    Article  CAS  Google Scholar 

  15. Young R, Terenghi G, Wiberg M. Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves. Br J Surg. 2002;55:235–40.

    CAS  Google Scholar 

  16. Wang AC, Wu C, Pisignano D, Wang ZL, Persano L. Polymer nanogenerators: opportunities and challenges for large‐scale applications. J Appl Polym Sci. 2018;135:45674.

    Article  Google Scholar 

  17. Huang NF, Lee RJ, Li S. Engineering of aligned skeletal muscle by micropatterning. Am J Transl Res. 2010;2:43.

    PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Sharma M, Kumar A, Powar S, Vaish R. Rapid bacterial disinfection using low frequency piezocatalysis effect. J Ind Eng Chem. 2019;77:355–64.

    Article  CAS  Google Scholar 

  19. Vatlin IS, Chernozem RV, Timin AS, Chernova AP, Plotnikov EV, Mukhortova YR, et al. Bacteriostatic effect of piezoelectric poly-3-hydroxybutyrate and polyvinylidene fluoride polymer films under ultrasound treatment. Polymers. 2020;12:240.

    Article  CAS  PubMed Central  Google Scholar 

  20. Raza ZA, Khalil S, Abid S. Recent progress in development and chemical modification of poly (hydroxybutyrate) based blends for potential medical applications. Int J Biol Macromol. 2020;160:77–100.

    Article  CAS  PubMed  Google Scholar 

  21. Steinbüchel A, Debzi E-M, Marchessault RH, Timm A. Synthesis and production of poly (3-hydroxyvaleric acid) homopolyester by Chromobacterium violaceum. Appl Microbiol Biotechnol. 1993;39:443–9.

    Article  Google Scholar 

  22. Köse GT, Kenar H, Hasırcı N, Hasırcı V. Macroporous poly (3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials. 2003;24:1949–58.

    Article  PubMed  Google Scholar 

  23. Valappil SP, Misra SK, Boccaccini AR, Roy I. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices. 2006;3:853–68.

    Article  CAS  PubMed  Google Scholar 

  24. Rossi S, Azghani AO, Omri A. Antimicrobial efficacy of a new antibiotic-loaded poly (hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother. 2004;54:1013–8.

    Article  CAS  PubMed  Google Scholar 

  25. Leong YK, Show PL, Ooi CW, Ling TC, Lan JC-W. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 2014;180:52–65.

    Article  CAS  PubMed  Google Scholar 

  26. Kunioka M, Tamaki A, Doi Y. Crystalline and thermal properties of bacterial copolyesters: poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules. 1989;22:694–7.

    Article  CAS  Google Scholar 

  27. Napolitano S, Wübbenhorst M. Deviation from bulk behaviour in the cold crystallization kinetics of ultrathin films of poly (3-hydroxybutyrate). J Phys Condens Matter. 2007;19:205121.

    Article  Google Scholar 

  28. Dai X, Li H, Ren Z, Russell TP, Yan S, Sun X. Confinement effects on the crystallization of poly (3-hydroxybutyrate). Macromolecules. 2018;51:5732–41.

    Article  CAS  Google Scholar 

  29. Frank C, Rao V, Despotopoulou M, Pease R, Hinsberg W, Miller R, et al. Structure in thin and ultrathin spin-cast polymer films. Science. 1996;273:912–5.

    Article  CAS  PubMed  Google Scholar 

  30. Hong S-G, Hsu H-W, Ye M-T. Thermal properties and applications of low molecular weight polyhydroxybutyrate. J Therm Anal Calorim. 2013;111:1243–50.

    Article  CAS  Google Scholar 

  31. Bonartsev A, Bonartseva G, Reshetov I, Kirpichnikov M, Shaitan K. Application of polyhydroxyalkanoates in medicine and the biological activity of natural poly (3-hydroxybutyrate). Acta Naturae. 2019;11:4–16.

  32. Chernozem RV, Romanyuk KN, Grubova I, Chernozem PV, Surmeneva MA, Mukhortova YR, et al. Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering. Nano Energy. 2021;89:106473.

    Article  CAS  Google Scholar 

  33. Cai Z, Xiong P, He S, Zhu C. Improved piezoelectric performances of highly orientated poly (β-hydroxybutyrate) electrospun nanofiber membrane scaffold blended with multiwalled carbon nanotubes. Mater Lett. 2019;240:213–6.

    Article  CAS  Google Scholar 

  34. Bonartsev A, Bonartseva G, Makhina T, Myshkina V, Luchinina E, Livshits V, et al. New poly (3-hydroxybutyrate)-based systems for controlled release of dipyridamole and indomethacin. Appl Biochem Microbiol. 2006;42:625–30.

    Article  CAS  Google Scholar 

  35. Bonartsev A, Zharkova I, Yakovlev S, Myshkina V, Mahina T, Voinova V, et al. Biosynthesis of poly (3-hydroxybutyrate) copolymers by Azotobacter chroococcum 7B: A precursor feeding strategy. Prep Biochem Biotechnol. 2017;47:173–84.

    Article  CAS  PubMed  Google Scholar 

  36. Chen L, Wang M. Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials. 2002;23:2631–9.

    Article  CAS  PubMed  Google Scholar 

  37. Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, et al. Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly (hydroxybutyrate)/poly (l-lactic acid) blends. Polymer. 2006;47:3132–40.

    Article  CAS  Google Scholar 

  38. Furukawa T, Sato H, Murakami R, Zhang J, Duan Y-X, Noda I, et al. Structure, dispersibility, and crystallinity of poly (hydroxybutyrate)/poly (L-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry. Macromolecules. 2005;38:6445–54.

    Article  CAS  Google Scholar 

  39. Sato H, Murakami R, Noda I, Ozaki Y. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C–H O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. J Mol Struct. 2005;744:35–46.

    Article  Google Scholar 

  40. Phongtamrug S, Tashiro K. X-ray crystal structure analysis of poly (3-hydroxybutyrate) β-Form and the proposition of a mechanism of the stress-induced α-to-β phase transition. Macromolecules. 2019;52:2995–3009.

    Article  CAS  Google Scholar 

  41. Liu C, Noda I, Martin DC, Chase DB, Ni C, Rabolt JF. Growth of anisotropic single crystals of a random copolymer, poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] driven by cooperative–CH··· O H-bonding. Polymer. 2018;154:111–8.

  42. Sun X, Tokuda A, Oji Y, Nakatani T, Tsuji H, Ozaki Y, et al. Effects of molar mass of poly (l-lactide acid) on the crystallization of poly [(R)-3-hydroxybutyrate] in Their Ultrathin Blend Films. Macromolecules. 2012;45:2485–93.

    Article  CAS  Google Scholar 

  43. Sato H, Ando Y, Dybal JI, Iwata T, Noda I, Ozaki Y. Crystal structures, thermal behaviors, and C− H··· O· C hydrogen bondings of poly (3-hydroxyvalerate) and poly (3-hydroxybutyrate) studied by infrared spectroscopy and X-ray diffraction. Macromolecules. 2008;41:4305–12.

    Article  CAS  Google Scholar 

  44. Wellen RM, Rabello MS, Fechine GJ, Canedo EL. The melting behaviour of poly (3-hydroxybutyrate) by DSC. Reproducibility study. Polym Test. 2013;32:215–20.

    Article  CAS  Google Scholar 

  45. Gunaratne L, Shanks R. Melting and thermal history of poly (hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Thermochim Acta. 2005;430:183–90.

    Article  CAS  Google Scholar 

  46. Wang MM, Braun H, Meyer E, Zhu J. Morphogenesis and chain behaviors related to crystallization in ultrathin polymer films. World Sci Tech R D. 2006;28:5–18.

    Google Scholar 

  47. Anbukarasu P, Sauvageau D, Elias AL. Enzymatic degradation of dimensionally constrained polyhydroxybutyrate films. Phys Chem Chem Phys. 2017;19:30021–30.

    Article  CAS  PubMed  Google Scholar 

  48. Reddy KR, Ogawa S, Sato H, Takahashi I, Ozaki Y. Evolution of intermediate and highly ordered crystalline states under spatial confinement in poly (3-hydroxybutyrate) ultrathin films. Macromolecules. 2016;49:4202–10.

    Article  Google Scholar 

  49. Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F. Interface and confinement induced order and orientation in thin films of poly (ϵ-caprolactone). Macromolecules. 2016;49:3442–51.

    Article  CAS  Google Scholar 

  50. Sato H, Murakami R, Padermshoke A, Hirose F, Senda K, Noda I, et al. Infrared spectroscopy studies of CH O hydrogen bondings and thermal behavior of biodegradable poly (hydroxyalkanoate). Macromolecules. 2004;37:7203–13.

    Article  CAS  Google Scholar 

  51. van Drongelen M, Van Erp T, Peters G. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of cooling rate and pressure. Polymer. 2012;53:4758–69.

    Article  Google Scholar 

  52. Hoshina H, Morisawa Y, Sato H, Minamide H, Noda I, Ozaki Y, et al. Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies. Phys Chem Chem Phys. 2011;13:9173.

    Article  CAS  PubMed  Google Scholar 

  53. Hoshina H, Morisawa Y, Sato H, Kamiya A, Noda I, Ozaki Y, et al. Higher order conformation of poly(3-hydroxyalkanoates) studied by terahertz time-domain spectroscopy. Appl Phys Lett. 2010;96:101904.

    Article  Google Scholar 

  54. Owen A, Heinzel J, Škrbić Ž, Divjaković V. Crystallization and melting behaviour of PHB and PHB/HV copolymer. Polymer. 1992;33:1563–7.

    Article  CAS  Google Scholar 

  55. Sato H, Ando Y, Mitomo H, Ozaki Y. Infrared spectroscopy and X-ray diffraction studies of thermal behavior and lamella structures of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(P (HB-co-HV)) with PHB-type crystal structure and PHV-type crystal structure. Macromolecules. 2011;44:2829–37.

    Article  CAS  Google Scholar 

  56. Choi Y-Y, Sharma P, Phatak C, Gosztola DJ, Liu Y, Lee J, et al. Enhancement of local piezoresponse in polymer ferroelectrics via nanoscale control of microstructure. ACS Nano. 2015;9:1809–19.

    Article  CAS  PubMed  Google Scholar 

  57. Jesse S, Guo S, Kumar A, Rodriguez B, Proksch R, Kalinin SV. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology. 2010;21:405703.

    Article  CAS  PubMed  Google Scholar 

  58. Bonartsev A, Voinova V, Bonartseva G. Poly (3-hydroxybutyrate) and human microbiota. Appl Biochem Microbiol. 2018;54:547–68.

    Article  CAS  Google Scholar 

  59. Voinova V, Bonartseva G, Bonartsev A. Effect of poly (3-hydroxyalkanoates) as natural polymers on mesenchymal stem cells. World J Stem Cells. 2019;11:764.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Manna SS, Ghanty C, Baindara P, Barik TK, Mandal SM. Electrochemical communication in biofilm of bacterial community. J Basic Microbiol. 2020;60:819–27.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was performed at Tomsk Polytechnic University within the framework of the Tomsk Polytechnic University Development Program (infrastructure provided for research activities) and was financially supported by the Russian Science Foundation (project number 20-63-47096, sample fabrication and characterization of their properties) and Ministry of Science and Higher Education (#075-15-2021-588 from 1.06.2021, piezoresponse study). RC, VS and RS acknowledge support from the German-Russian Interdisciplinary Science Center (G-risc) funded by the German Academic Exchange Service (DAAD). This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC). We also acknowledge Alexey Rusakov and Alexey Useinov from the Federal State Budgetary Institution “Technological Institute for Superhard and Novel Carbon Materials” for their help in performing previous measurements of the Young’s modulus of the PHB and PHB-HV films by nanoindentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Surmeneva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41428_2022_662_MOESM1_ESM.docx

A comprehensive study on the structure and piezoelectric response of biodegradable polyhydroxybutyrate-based films for tissue engineering applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernozem, R.V., Pariy, I.O., Pryadko, A. et al. A comprehensive study of the structure and piezoelectric response of biodegradable polyhydroxybutyrate-based films for tissue engineering applications. Polym J 54, 1225–1236 (2022). https://doi.org/10.1038/s41428-022-00662-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00662-8

This article is cited by

Search

Quick links