Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Syntheses and properties of Cu(II), Al(III), and Ti(IV) coordination polymers using an acetylacetonato-terminated polyhedral oligomeric silsesquioxane

Abstract

Synthesis of coordination polymers based on polyhedral oligomeric silsesquioxane (POSS) has attracted attention as an important research direction because POSS-based polymers can be used for element blocks. In this work, a POSS with an acetylacetonato group (POSS-acac) and metal–coordination polymers comprising POSS-acac (CP(Metal)s) were synthesized. POSS-acac was synthesized by the thiol–ene reaction of mercaptopropyl-terminated POSS with 3-allylacetylacetone. CP(Metal)s were synthesized by mixing POSS-acac and metal sources such as Cu(OCOCH3)2, Ti(OiPr)4, and Al(OiPr)3. CP(Metal)s were composed of a POSS core structure and the enolate of an acetylacetonato moiety, as determined by infrared spectroscopy. The likely structure of CP(Metal)s was estimated from the UV–Vis spectrum, and the residue left after burning contained [POSS-acac][Cu]2.3, [POSS-acac][Ti(OiPr)2]2.5[Ti2O2]0.5, and [POSS-acac][Al]2.3. The surface morphologies of the CP(Metal)s were observed using scanning electron microscopy. CP(Ti) and CP(Al) exhibited a three-dimensional network; in contrast, CP(Cu) showed a flattened surface morphology. These morphologies were induced by the polymer structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abe Y, Gunji T. Oligo- and polysiloxanes. Prog Polym Sci 2004;29:149–82.

    Article  CAS  Google Scholar 

  2. Laine RM. Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanes. J Mater Chem 2005;15:3725–44.

    Article  CAS  Google Scholar 

  3. Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 2010;110:2081–173.

    Article  CAS  PubMed  Google Scholar 

  4. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn 2015;88:633–43.

    Article  CAS  Google Scholar 

  5. Wada Y, Iyoki K, Sugawara-Narutaki A, Okubo T, Shimojima. Diol-linked microporous networks of cubic siloxane cages. A Chem Eur J 2013;19:1700–5.

    Article  CAS  PubMed  Google Scholar 

  6. Sato N, Kuroda Y, Abe T, Wada H, Shimojima A, Kuroda K. Regular assembly of cage siloxanes by hydrogen bonding of dimethylsilanol groups. Chem Commun 2015;51:11034–7.

    Article  CAS  Google Scholar 

  7. Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ. Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes. Macromolecules. 1993;26:2141–2.

    Article  CAS  Google Scholar 

  8. Haddad TS, Lichtenhan JD. Hybrid organic−inorganic thermoplastics:  styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules. 1996;29:7302–4.

    Article  CAS  Google Scholar 

  9. Abbenhuis HCL, Krijnen S, Van Santen RA. Modelling the active sites of heterogeneous titanium epoxidation catalysts using titanium silasequioxanes: insight into specific factors that determine leaching in liquid-phase processes. Chem. Commun. 1997;331–2.

  10. Abbenhuis HCL, Van Herwijnen HWG, Van Santen RA. Macromolecular materials in heterogeneous catalysis: an aluminium silasesquioxane gel as active catalyst in Diels–Alder reactions of enones. Chem. Commun. 1996;1941–2.

  11. Hay MT, Seurer B, Holmes D, Lee A. A novel linear titanium(IV)-POSS coordination polymer. Macromolecules. 2010;43:2108–10.

    Article  CAS  Google Scholar 

  12. Marcinko S, Fadeev AY. Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir. 2004;20:2270–3.

    Article  CAS  PubMed  Google Scholar 

  13. Banerjee S, Kataoka S, Takahashi T, Kamimura Y, Suzuki K, Sato K, et al. Controlled formation of ordered coordination polymeric networks using silsesquioxane building blocks. Dalton Trans. 2016;45:17082–6.

    Article  CAS  PubMed  Google Scholar 

  14. Xu Q, Li Z, Chen M, Li H. Synthesis and luminescence of octacarboxy cubic polyhedral oligosilsesquioxanes coordinated with terbium. CrystEngComm. 2015;18:177–82.

    Article  CAS  Google Scholar 

  15. Sanchez C, Belleville P, Popall M, Nicole L. Applications ofadvanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696–753.

    Article  CAS  PubMed  Google Scholar 

  16. Carbonell E, Bivona LA, Fusaro L, Aprile C. Silsesquioxane–terpyridine nano building blocks for the design of three-dimensional polymeric networks. Inorg Chem 2017;56:6393–403.

    Article  CAS  PubMed  Google Scholar 

  17. Kucuk AC, Matsui J, Miyashita T. Synthesis and photochemical response of Ru(ii)-coordinated double-decker silsesquioxane. RSC Adv. 2018;8:2148–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hashimoto M, Fujii S, Imoto H, Naka K. Synthesis of metallosupramolecular polymers incorporating cage silsesquioxanes in the main chains. J Polym Sci Part A: Polym Chem 2019;57:2260–6.

    Article  CAS  Google Scholar 

  19. Holm RH, Cotton FA. Spectral investigations of metal complexes of β-diketones. I. nuclear magnetic resonance and ultraviolet spectra of acetylacetonates. J Am Chem Soc 1958;80:5658–63.

    Article  CAS  Google Scholar 

  20. Zolotareva NV, Semenov VV. β-Diketones and their derivatives in sol–gel processes. Russ Chem Rev 2013;82:964–87.

    Article  CAS  Google Scholar 

  21. Ma X, Tao F, Zhang Y, Li T, Raymo FM, Cui Y. Detection of nitroaromatic explosives by a 3D hyperbranched σ–π conjugated polymer based on a POSS scaffold. J Mater Chem A 2017;5:14343–54.

    Article  CAS  Google Scholar 

  22. Davis RB, Hurd P. The reaction of some diketones with sodium acetylide. J Am Chem Soc 1955;77:3284–7.

    Article  CAS  Google Scholar 

  23. Prigyai N, Chanmungkalakul S, Ervithayasuporn V, Yodsin N, Jungsuttiwong S, Takeda N, et al. Lithium-templated formation of polyhedral oligomeric silsesquioxanes (POSS). Inorg Chem 2019;58:15110–7.

    Article  CAS  PubMed  Google Scholar 

  24. Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY. Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem Mater 2008;20:1548–54.

    Article  CAS  Google Scholar 

  25. Bivona LA, Fichera O, Fusaro L, Giacalone F, Buaki-Sogo M, Gruttadauria M, et al. A polyhedral oligomeric silsesquioxane-based catalyst for the efficient synthesis of cyclic carbonates. Catal Sci Technol 2015;5:5000–7.

    Article  CAS  Google Scholar 

  26. Gnanasekaran D, Madhavan K, Tsibouklis J, Reddy BSR. Ring opening metathesis polymerization of polyoctahedral oligomeric silsesquioxanes (POSS) incorporated oxanorbornene-5,6-dicarboximide: synthesis, characterization, and surface morphology of copolymers. Aust J Chem 2011;64:309–15.

    Article  CAS  Google Scholar 

  27. Reeves LW. Nuclear magnetic resonance measurements in solutions of acetylacetone: the effect of solvent interactions on the tautomeric equilibrium. Can J Chem 1957;35:1351–65.

    Article  CAS  Google Scholar 

  28. Giuffrida S, Condorelli GG, Costanzo LL, Fragalà IL, Ventimiglia G, Vecchio G. Photochemical mechanism of the formation of nanometer-sized copper by UV irradiation of ethanol Bis(2,4-pentandionato)copper(II) solutions. Chem Mater 2004;16:1260–6.

    Article  CAS  Google Scholar 

  29. Leaustic A, Babonneau F, Livage J. Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPr-iso, OEt) modified by acetylacetone. 2. From the modified precursor to the colloids. J Chem Mater 1989;1:248–52.

    Article  CAS  Google Scholar 

  30. Hayami R, Sagawa T, Tsukada S, Yamamoto K, Gunji T. Synthesis, characterization and properties of titanium phosphonate clusters. Polyhedron. 2018;147:1–8.

    Article  CAS  Google Scholar 

  31. Jinno K, Mae H, Fujimoto C. Packed microcolumn SFC coupled with photodiode array UV detector and inductively coupled plasma detector (SFC-photodiode array UV-ICP). J High Resol Chromatogr 1990;13:13–17.

    Article  CAS  Google Scholar 

  32. Yamamoto A, Kambara S. Structures of the reaction products of tetraalkoxytitanium with acetylacetone and ethyl acetoacetate. J Am Chem Soc 1957;79:4344–8.

    Article  CAS  Google Scholar 

  33. Shirodker M, Borker V, Naether C, Bensch W, Rane KS. Synthesis and structure of tris (acetylacetonato) aluminum(III). Indian J Chem A. 2010;49:1607–11.

    Google Scholar 

  34. Pereira C, Patrício S, Silva AR, Magalhães AL, Carvalho AP, Pires J, et al. Copper acetylacetonate anchored onto amine-functionalised clays. J Colloid Interface Sci. 2007;316:570–9.

    Article  CAS  PubMed  Google Scholar 

  35. Li L, Feng S, Liu H. Hybrid lanthanide complexes based on a novel β-diketone functionalized polyhedral oligomeric silsesquioxane (POSS) and their nanocomposites with PMMA via in situ polymerization. RSC Adv. 2014;4:39132–9.

    Article  CAS  Google Scholar 

  36. Lee L, Chen W, Liu W. Structural control of oligomeric methyl silsesquioxane precursors and their thin-film properties. J Polym Sci A Polym Chem 2002;40:1560–71.

    Article  CAS  Google Scholar 

  37. Patil KC, Chandrashekhar V, George MW, Rao CN. IInfrared spectra and thermal decompositions of metal acetates and dicarboxylates. Can J Chem. 1968;46:257–65.

    Article  CAS  Google Scholar 

  38. Singh YP, Saxena S, Rai AK. β-ketoester derivatives of aluminium: synthesis and characterisation. Synth React Inorg Met Org Chem 1984;14:237–51.

    Article  CAS  Google Scholar 

  39. Wengrovius JH, Garbauskas MF, Williams EA, Goint RC, Donahue PE, Smith JF. Aluminum alkoxide chemistry revisited: synthesis, structures, and characterization of several aluminum alkoxide and siloxide complexes. J Am Chem Soc 1986;108:982–9.

    Article  CAS  Google Scholar 

  40. Saunders BR, Vincent B. Microgel particles as model colloids: theory, properties and applications. Adv Colloid Interface Sci. 1999;80:1–25.

    Article  CAS  Google Scholar 

  41. Piper TS, Belford RL. The ground state of copper acetylacetonate. Mol Phys 1962;5:169–81.

    Article  CAS  Google Scholar 

  42. Smith GD, Caughlan CN, Campbell JA.Crystal and molecular structures of di-μ-oxo-bis(diacetylacetonatotitanium(IV))-bisdioxane, (TiO)C5H7O2)2)2•2C4H8O2, di-μ-oxo-bis(diacetylacetonatotitanium(IV)), (TiO(C5H7O2)2)2.Inorg Chem. 1972;11:2989–93.

    Article  CAS  Google Scholar 

  43. Yamamoto A, Kambara S. Infrared spectra of organic titanium compounds containing both alkoxy and chelating groups. Nippon Kagaku Zasshi. 1959;80:1239–43.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP18K14287 and JP19K05636.

Author information

Authors and Affiliations

Authors

Contributions

YS: Investigation, conceptualization, visualization, methodology, writing–original draft. RH: Conceptualization, writing–review and editing. KY: Funding acquisition and supervision. TG: Writing–review and editing, funding acquisition, and supervision.

Corresponding authors

Correspondence to Yohei Sato or Takahiro Gunji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Hayami, R., Yamamoto, K. et al. Syntheses and properties of Cu(II), Al(III), and Ti(IV) coordination polymers using an acetylacetonato-terminated polyhedral oligomeric silsesquioxane. Polym J 54, 985–993 (2022). https://doi.org/10.1038/s41428-022-00651-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00651-x

This article is cited by

Search

Quick links