Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Polymer/nanocarbon nanocomposites with enhanced properties

Abstract

High-functioning/high-performance polymer nanocomposites have been intensively studied by using nanocarbons such as carbon nanotubes and graphene, which possess excellent properties derived from the rigid structures of the carbon backbones. However, in general, nanocarbons tend to agglomerate in polymer matrices due to van der Waals forces and low reactivity, thus resulting in defects at the interfaces. The high potentials of nanocarbons cannot be exploited unless nanocarbons are highly dispersed in polymer matrices with favorable interfacial interactions. For a few decades, considerable effort has been expended to improve the dispersibilities and interfacial interactions of polymer/nanocarbon nanocomposites. This review describes recent advances in designs of polymer/nanocarbon nanocomposites while focusing on our research on the high potential of nanodiamond-reinforced polymer nanocomposites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nirmalraj P, Santos MC, Mario J, Rios S, Davila D, Vargas F, et al. Polymer–nanocarbon topological and electronic interface. Langmuir. 2018;34:6225–30.

    Article  CAS  PubMed  Google Scholar 

  2. Lazarenko A, Vovchenko L, Matzui L, Kozachenko V, Prylutskyy Y, Scharff P, et al. Thermal diffusivity of nanocarbon composites. Polym Comp. 2011;32:14–17.

    Article  CAS  Google Scholar 

  3. Bao W, Pickel AD, Zhang Q, Chen Y, Yao Y, Wan J, et al. Flexible, high temperature, planar lighting with large scale printable nanocarbon paper. Adv Mater. 2016;28:4684–91.

    Article  CAS  PubMed  Google Scholar 

  4. Nadiv R, Shachar G, Peretz-Damari S, Varenika M, Levy I, Buzaglo M, et al. Performance of nanocarbon loaded polymer composites: dimensionality matters. Carbon. 2018;126:410–8.

    Article  CAS  Google Scholar 

  5. Moradi M, Mohandesi JA, Haghshenas DF. Mechanical properties of the poly(vinyl alcohol) based nanocomposites at low content of surfactant wrapped graphene sheet. Polymer. 2015;60:207.

    Article  CAS  Google Scholar 

  6. Castell P, Cano M, Maser WK, Benito AM. Combination of two dispersants as a valuable strategy to prepare improved poly (vinyl alcohol)/carbon nanotube composites. Comp Sci Technol. 2013;80:101–7.

    Article  CAS  Google Scholar 

  7. Usrey ML, Strano MS. Controlling single-walled carbon nanotube surface adsorption with covalent and noncovalent functionalization. J Phys Chem C. 2009;13:12443–53.

    Article  CAS  Google Scholar 

  8. Gong X, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater. 2000;12:1049–52.

    Article  CAS  Google Scholar 

  9. Wang Y, Xiong S, Wang X, Chu J, Zhang R, Gong M, et al. Covalently bonded polyaniline-reduced graphene oxide/single-walled carbon nanotubes nanocomposites: influence of various dimensional carbon nanostructures on the electrochromic behavior of PANI. Polym J. 2020;52:783–92.

    Article  CAS  Google Scholar 

  10. Zheng H, Zhang W, Li B, Zhu J, Wang C, Song G, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review. Compos B Eng. 2022;233:109639.

    Article  CAS  Google Scholar 

  11. Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006;39:5194–205.

    Article  CAS  Google Scholar 

  12. Cho BG, Hwang SH, Park M, Park JK, Park YB, Chae HG. The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites. Compos B Eng. 2019;160:436–45.

    Article  CAS  Google Scholar 

  13. Ogawa D, Morimune-Moriya S, Nakamura K. Effective polymerization technique for plasma-treated multiwalled carbon nanotubes to maximize wear resistance of composite polyurethan. J Vac Sci Technol B. 2022;40:022803.

    Article  CAS  Google Scholar 

  14. Chang CM, Liu YL. Functionalization of multiwalled carbon nanotubes with nonreactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon. 2010;48:1289–97.

    Article  CAS  Google Scholar 

  15. Park SJ, Park SJ. Effect of ozone-treated single-walled carbon nanotubes on interfacial properties and fracture toughness of carbon fiber-reinforced epoxy composites. Compos A Appl Sci Manuf. 2020;137:105937.

    Article  CAS  Google Scholar 

  16. Bhandari S, Khastgir D. Synergistic effect of simultaneous dual doping in solvent-free mechanochemical synthesis of polyaniline supercapacitor comparable to the composites with multiwalled carbon nanotube. Polymer. 2015;81:62–69.

    Article  CAS  Google Scholar 

  17. Liu T, Phang IY, Shen L, Chow SY, Zhang WD. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6. Compos Macromol. 2004;37:7214–22.

    Article  CAS  Google Scholar 

  18. Lee CH, Liu JY, Chen SL, Wang YZ. Miscibility and properties of acid-treated multi-walled carbon nanotubes/polyurethane nanocomposites. Polym J. 2007;39:138–46.

    Article  CAS  Google Scholar 

  19. Scaffaro R, Maio A, Tito AC. High performance PA6/CNTs nanohybrid fibers prepared in the melt. Compos Sci Technol. 2012;72:1918–23.

    Article  CAS  Google Scholar 

  20. Danileno VV. On the history of the discovery of nanodiamond synthesis. Phys Solid State. 2004;46:595–9.

    Article  CAS  Google Scholar 

  21. Krüger A, Kataoka F, Ozawa M, Aleksenskii A, Vul’ AY, Fujino Y, et al. Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon. 2005;43:1722–30.

    Article  CAS  Google Scholar 

  22. Taylor WH. Structure and properties of diamond. Nature. 1947;159:729–31.

    Article  Google Scholar 

  23. Field JE. The mechanical and strength properties of diamond. Rep Prog Phys. 2012;75:126505.

    Article  CAS  PubMed  Google Scholar 

  24. Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature. 2014;510:250–3.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, et al. Poly (vinyl alcohol)/SWNT composite film. Nano Lett. 2003;3:1285–8.

    Article  CAS  Google Scholar 

  26. Zhao X, Zhang Q, Chen D, Lu P. Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules. 2010;43:2357–63.

    Article  CAS  Google Scholar 

  27. Cheng HKF, Sahoo NG, Tan YP, Pan Y, Bao HN, Li L, et al. Poly (vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted graphene oxide. ACS Appl Mater Interfaces. 2012;4:2387–94.

    Article  CAS  PubMed  Google Scholar 

  28. Lee WJ, Clancy AJ, Fernández-Toribio JC, Anthony DB, White ER, Solano E, et al. Interfacially grafted single-walled carbon nanotube/poly(vinyl alcohol) composite fibers. Carbon. 2019;146:162–71.

    Article  CAS  Google Scholar 

  29. Shin YE, Cho JY, Yeom J, Ko H, Han JT. Electronic textiles based on highly conducting poly(vinyl alcohol)/carbon nanotube/silver nanobelt hybrid fibers. ACS Appl Mater Interfaces. 2021;13:31051–8.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou T, Chen F, Tang C, Bai H, Zhang Q, Deng H, et al. The preparation of high performance and conductive poly(vinyl alcohol)/graphene nanocomposite by reducing graphite oxide with sodium hydrosulfite. Comp Sci Technol. 2011;71:1266–70.

    Article  CAS  Google Scholar 

  31. Amirilargani M, Tofighy MA, Mohammadi T, Sadatnia B. Novel poly(vinyl alcohol)/multiwalled carbon nanotube nanocomposite membranes for pervaporation dehydration of isopropanol: poly(sodium 4-styrenesulfonate) as a functionalization agent. Ind Eng Chem Res. 2014;53:12819–29.

    Article  CAS  Google Scholar 

  32. Zhou G, Byun JH, Oh Y, Jung BM, Cha HJ, Seong DG, et al. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments. ACS Appl Mater Interfaces. 2017;9:4788–97.

    Article  CAS  PubMed  Google Scholar 

  33. Abudabbus MM, Jevremović I, Nešović K, Perić-Grujić A, Rhee KY, Mišković-Stanković V. In situ electrochemical synthesis of silver-doped poly(vinyl alcohol)/graphene composite hydrogels and their physico-chemical and thermal properties. Compos B Eng. 2018;140:99–107.

    Article  CAS  Google Scholar 

  34. Morimune S, Nishino T, Goto T. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J. 2012;44:1056–63.

    Article  CAS  Google Scholar 

  35. Morimune S, Kotera M, Goto T, Nishino T. Uniaxial drawing of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon. 2014;70:38–45.

    Article  CAS  Google Scholar 

  36. Morimune-Moriya S, Goto T, Nishino T. Effect of aspect ratio of graphene oxide on properties of poly (vinyl alcohol) nanocomposites. Nanocomposites. 2019;5:84–93.

    Article  CAS  Google Scholar 

  37. Morimune S, Kotera M, Nishino T, Hata K, Goto K. Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules. 2011;44:4415–21.

    Article  CAS  Google Scholar 

  38. Morimune S, Nishino T. Strong, tough, transparent and highly heat-resistant acrylic glass based on nanodiamond. Polymer. 2021;222:123661.

    Article  CAS  Google Scholar 

  39. Morimune S, Nishino T, Goto T. An ecological approach to graphene oxide reinforced poly(methyl methacrylate) nanocomposites. ACS Appl Mater Interfaces. 2012;4:3596–601.

    Article  CAS  PubMed  Google Scholar 

  40. Morimune-Moriya S, Yada S, Kuroki N, Ito S, Hashimoto T, Nishino T. Strong reinforcement effects of nanodiamond on mechanical and thermal properties of polyamide 66. Comp Sci Technol. 2020;199:108356.

    Article  CAS  Google Scholar 

  41. Tohgo K, Fukuhara D, Hadano A. The influence of debonding damage on fracture toughness and crack-tip field in glass-particle-reinforced Nylon 66 composites. Comp Sci Technol. 2001;61:1005–16.

    Article  Google Scholar 

  42. Li L, Li CY, Ni C, Rong L, Hsiao B. Structure and crystallization behavior of Nylon 66/multiwalled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer. 2007;48:3452–60.

    Article  CAS  Google Scholar 

  43. Hartikainen J, Lehtonen O, Harmia T, Lindner M, Valkama, Ruokolainen J, et al. Structure and morphology of polyamide 66 and oligomeric phenolic resin blends: molecular modeling and experimental investigations. Chem Mater. 2004;16:3032–9.

    Article  CAS  Google Scholar 

  44. Viswanathan G, Chakrapani N, Yang H, Wei B, Chung H, Cho K, et al. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J Am Chem Soc. 2003;125:9258–9.

    Article  CAS  PubMed  Google Scholar 

  45. Zille A, Fernandes MM, Francesko A, Tzanov T, Fernandes M, Oliveira FR, et al. Size and aging effects on antimicrobial efficiency of silver nanoparticles coated on polyamide fabrics activated by atmospheric DBD plasma. ACS Appl Mater Interfaces. 2015;7:13731–44.

    Article  CAS  PubMed  Google Scholar 

  46. Zou H, Wang K, Zhang Q, Fu Q. A change of phase morphology in poly (p-phenylene sulfide)/polyamide 66 blends induced by adding multiwalled carbon nanotubes. Polymer. 2006;47:7821–6.

    Article  CAS  Google Scholar 

  47. Linggawati A, Mohammad AW, Ghazali Z. Effect of electron beam irradiation on morphology and sieving characteristics of nylon-66 membranes. Eur Polym J. 2009;45:2797–804.

    Article  CAS  Google Scholar 

  48. Wu Y, Xu Y, Wang D, Zhao Y, Weng S, Xu D, et al. FT-IR spectroscopic investigation on the interaction between nylon 66 and lithium salts. J Appl Polym Sci. 2004;91:2869–75.

    Article  CAS  Google Scholar 

  49. Jovic B, Nikolic A, Petrovic S. FTIR spectroscopic study of hydrogen bonding and solvent induced frequency shifts of N-tert-butylacetamide. J Mol Struct. 2013;1044:140–3.

    Article  CAS  Google Scholar 

  50. Guo L, Sato H, Hashimoto T, Ozaki Y. FTIR study on hydrogen-bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol). Macromolecules. 2010;43:3897–902.

    Article  CAS  Google Scholar 

  51. Morimune-Moriya S, Obara K, Fuseya M, Katanosaka M. Development and characterization of strong, heat-resistant and thermally conductive polyimide/nanodiamond nanocomposites. Polymer. 2021;230:124098.

    Article  CAS  Google Scholar 

  52. Chen J, Yan L, Song W, Xu D. Interfacial characteristics of carbon nanotube-polymer composites: a review. Comp Part A: Appl Sci Manuf. 2018;114:149–69.

    Article  CAS  Google Scholar 

  53. Chazot CAC, Hart AJ. Understanding and control of interactions between carbon nanotubes and polymers for manufacturing of high-performance composite materials. Comp Sci Technol. 2019;183:107795.

    Article  CAS  Google Scholar 

  54. Pramanik C, Nepal D, Nathanson M, Gissinger JR, Garley A, Berry RJ, et al. Molecular engineering of interphases in polymer/carbon nanotube composites to reach the limits of mechanical performance. Comp Sci Technol. 2018;166:86–94.

    Article  CAS  Google Scholar 

  55. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112:6156–214.

    Article  CAS  PubMed  Google Scholar 

  56. Abdou JP, Reynolds KJ, Pfau MR, Staden J, Braggin GA, Tajaddod N, et al. Interfacial crystallization of isotactic polypropylene surrounding macroscopic carbon nanotube and graphene fibers. Polymer. 2016;91:136–45.

    Article  CAS  Google Scholar 

  57. Han JT, Kim JS, Kim SH, Lim HS, Jeong HJ, Jeong SY, et al. Nanocarbon-induced rapid transformation of polymer surfaces into superhydrophobic surfaces. ACS Appl Mater Interfaces. 2010;2:3378–83.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Z, Qu J, Feng Y, Feng W. Assembly of graphene-aligned polymer composites for thermal conductive applications. Compos Commun. 2018;9:33–41.

    Article  Google Scholar 

  59. Chan CM, Wu J, Li JX, Cheung YK. Polypropylene/calcium carbonate nanocomposites. Polymer. 2002;43:2981–2992.

    Article  CAS  Google Scholar 

  60. Zhang F, Feng Y, Feng W. Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater Sci Eng. 2020;142:100580.

    Article  Google Scholar 

  61. Chen J, Wei H, Bao H, Jiang P, Huang X. Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications. ACS Appl Mater Interfaces. 2019;11:31402–10.

    Article  CAS  PubMed  Google Scholar 

  62. Sun J, Zhang X, Du Q, Murugadoss V, Wu D, Guo Z. The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf. 2021;13:53–65.

    CAS  Google Scholar 

  63. Zhao Y, Niu M, Yang F, Jia Y, Cheng Y. Ultrafast electro-thermal responsive heating film fabricated from graphene modified conductive. Mater Eng Sci. 2019;8:33–38.

    Google Scholar 

  64. Li J, Zhang P, He H, Zhai S, Xian Y, Ma W, et al. Enhanced thermal transport properties of epoxy resin thermal interface materials. ES Energy Environ. 2019;4:41–47.

    Google Scholar 

  65. Wu S, Xiao C, Kong S, Li B, Yang Z, Tang Z, et al. Carbon nanodots as an eco-friendly activator of sulfur vulcanization in diene-rubber composites. Compos Commun. 2021;25:100755.

    Article  Google Scholar 

  66. Mochalin VN, Neitzel I, Etzold BJM, Peterson A, Palmese G, Gogotsi Y. Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano. 2011;5:7494–502.

    Article  CAS  PubMed  Google Scholar 

  67. Neitzel I, Mochalin VN, Niu J, Cuadra J, Kontsos A, Palmese GR, et al. Maximizing Young’s modulus of aminated nanodiamond-epoxy composites measured in compression. Polymer. 2012;53:5965–71.

    Article  CAS  Google Scholar 

  68. Morimune-Moriya S, Kato T, Haga R, Hashimoto T, Tanahashi H. Reinforcement effects of nanodiamond on natural rubber nanocomposites. J Soc Rubber Sci Technol, Jpn. 2019;92:253–9.

    Article  CAS  Google Scholar 

  69. Sobani M, Soucek MD. Low temperature fracture toughness of polysulfide modified BPA-epoxide primers. Prog Org Coat. 2022;163:106626.

    Article  CAS  Google Scholar 

  70. Li X, Nie W, Xu Y, Zhou Y, Chen P, Zhang C. Functionalized GO/polysulfide rubber composites with excellent comprehensive properties based interfacial optimum design. Compos, Part B. 2020;198:108234.

    Article  CAS  Google Scholar 

  71. Vinayan BP, Zhao-Karger Z, Diemant T, Chakravadhanula VSK, Schwarzburger NI, Cambaz MA, et al. Performance study of magnesium–sulfur battery using a graphene based sulfur composite cathode electrode and a nonnucleophilic Mg electrolyte. Nanoscale. 2016;8:3296–306.

    Article  CAS  PubMed  Google Scholar 

  72. Wang D, Tang Z, Fang S, Wu S, Zeng H, Wang A, et al. The use of inverse vulcanized polysulfide as an intelligent interfacial modifier in rubber/carbon black composites. Carbon. 2021;184:409–17.

    Article  CAS  Google Scholar 

  73. Gannoruwa A, Sumita A, Kawahara S. Highly enhanced mechanical properties in natural rubber prepared with a nanodiamond nanomatrix structure. Polymer. 2017;126:40–47.

    Article  CAS  Google Scholar 

  74. Wu J, Xang W, Huang G, Li H, Tang M, Wu S, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer. 2013;54:3314–23.

    Article  CAS  Google Scholar 

  75. Morimune-Moriya S. Mechanical properties of polymer nanocomposites reinforced with high aspect ratio fillers. J Adhes Soc Jpn. 2017;53:348–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author expresses gratitude to all of her colleagues for their valuable contributions to this focused review. The author is also sincerely grateful to Prof. Takashi Nishino from Kobe University for technical help and fruitful discussions. This research was supported by KAKENHI grants for Young Scientists 20K15043 from the Japan Society for the Promotion of Science (JSPS), 11th Shiseido Female Researcher Science Grant from Shiseido Co., Ltd., and Tokuyama Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seira Morimune-Moriya.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimune-Moriya, S. Polymer/nanocarbon nanocomposites with enhanced properties. Polym J 54, 977–984 (2022). https://doi.org/10.1038/s41428-022-00644-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00644-w

This article is cited by

Search

Quick links