Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Brønsted acid-catalyzed ring-opening polycondensation of galactose-based cyclic sulfite

Abstract

We investigated the polymerization behavior of galactose-based cyclic sulfite as a monomer used to develop the graft polymerization preparation of (1 → 2)-galactan from an alcoholic aglycon. Galactose-based cyclic sulfite 6 was prepared from commercially available tri-O-acetyl-D-galactal in 5 steps. Treatment of 6 with catalytic (+)-10-camphorsulfonic acid (CSA) in the presence of water as the initiator exhibited ring-opening polycondensation of 6 to give benzylated (1 → 2)-galactan and complete elimination of SO2 from the main polymer chain. The MALDI-TOF mass spectrum of the obtained polymer showed a simple pattern with even intervals, which suggested formation of benzylated (1 → 2)-galactan with OH groups at both ends. When we used 4-penten-1-ol as the alcohol initiator for polycondensation of 6, we obtained a pentenoyl group-terminated polymer and/or cyclic oligosaccharides. The reaction mechanism for polycondensation of 6 was probed through systematic investigations of polymerization and DOSY spectral measurements of the polymer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Scheme 4

Similar content being viewed by others

References

  1. Prigozy TI, Naidenko O, Qasba P, Elewaut D, Brossay L, Khurana A, et al. Glycolipid antigen processing for presentation by CD1d molecules. Science. 2001;291:664–7.

    Article  CAS  PubMed  Google Scholar 

  2. Maurya R, Sathiamoorthy B, Deepak M. Flavonoids and phenol glycosides from Boerhavia diffusa. Nat Prod Res. 2007;21:126–34.

    Article  CAS  PubMed  Google Scholar 

  3. Carmely S, Roll M, Loya Y, Kashman Y. The structure of eryloside A, a new antitumor and antifungal 4-methylated steroidal glycoside from the sponge Erylus lendenfeldi. J Nat Prod 1989;52:167–70.

    Article  CAS  PubMed  Google Scholar 

  4. Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF. Dynamic covalent chemistry. Angew Chem Int Ed. 2002;41:898–952.

    Article  Google Scholar 

  5. Lehn JM. Dynamers: Dynamic molecular and supramolecular polymers. Prog Polym Sci. 2005;30:814–31.

    Article  CAS  Google Scholar 

  6. Takata T, Koyama Y. Recycling of network polymer exploiting dynamic covalent chemistry: molecular design directed toward novel recyclable materials. Kobunshi. 2008;57:346–9.

    Article  CAS  Google Scholar 

  7. Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. The experimental evidence in support of glycosylation mechanisms at the SN1-SN2 interface. Chem Rev. 2018;118:8242–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. “One-pot” protection, glycosylation, and protection-glycosylation strategies of carbohydrates. Chem Rev. 2018;118:8025–104.

    Article  CAS  PubMed  Google Scholar 

  9. Das R, Mukhopadhyay B. Chemical O-glycosylations: An overview. ChemistryOpen. 2016;5:401–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sangwan R, Mandal PK. Recent advances in photoinduced glycosylation: oligosaccharides, glycoconjugates and their synthetic applications. RSC Adv. 2017;7:26256–321.

    Article  CAS  Google Scholar 

  11. Van der Vorm S, Hansen T, van Hengst JMA, Overkleeft HS, van der Marel GA, Codée JDC. Acceptor reactivity in glycosylation reactions. Chem Soc Rev. 2019;48:4688–706.

    Article  PubMed  Google Scholar 

  12. Kanie O, Ito Y, Ogawa T. Orthogonal glycosylation strategy in oligosaccharide synthesis. J Am Chem Soc. 1994;116:12073–4.

    Article  CAS  Google Scholar 

  13. Mootoo DR, Konradsson P, Udodong U, Fraser-Reid BO. Armed and disarmed n-pentenyl glycosides in saccharide couplings leading to oligosaccharides. J Am Chem Soc. 1988;110:5583–4.

    Article  CAS  Google Scholar 

  14. Halcomb RL, Danishefsky SJ. On the direct epoxidation of glycals: application of a reiterative strategy for the synthesis of β-linked oligosaccharides. J Am Chem Soc. 1989;111:6661–6.

    Article  CAS  Google Scholar 

  15. Sharkey PF, Eby R, Schuerch C. Chemical synthesis of a (1→2)-D-glucopyranan. Carbohydr Res. 1981;96:223–9.

    Article  CAS  Google Scholar 

  16. Yamaguchi H, Schuerch C. Chemical synthesis of (1→2)-α-D-mannopyranan. Biopolymers. 1980;19:297–309.

    Article  CAS  Google Scholar 

  17. Ihsan AB, Koyama Y. Substituent optimization of (1→2)-glucopyranan for tough, strong, and highly stretchable film with dynamic interchain interactions. ACS Macro Lett. 2020;9:720–4.

    Article  CAS  PubMed  Google Scholar 

  18. Shetty SS, Koyama Y. One-pot synthesis of glycyrrhetic acid polyglycosides based on grafting-from method using cyclic sulfite. Tetrahedron Lett. 2016;57:3657–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fujitsuka M, Araki K, Kodama T, Hien TTD, Sakuragi M, Shetty SS, et al. Supramolecular control of spin equilibrium and oxidation state in nanohybrids of amphiphilic glycyrrhetic acid derivatives with [Fe(TACN)2]2+. Chem Lett. 2021;50:1142–5.

    Article  CAS  Google Scholar 

  20. Nargis M, Ihsan AB, Koyama Y. Bolaamphiphilic properties and pH-dependent micellization of quercetin polyglycoside. RSC Adv. 2019;9:33674–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nargis M, Ihsan AB, Koyama Y. Effects of sugar chain length of quercetin-3-O-glycosides on micellization in aqueous media. Chem Lett. 2020;49:896–9.

    Article  CAS  Google Scholar 

  22. Nargis M, Ihsan AB, Koyama Y. Thermoresponsive structure and dye encapsulation of micelles comprising bolaamphiphilic quercetin polyglycoside. Langmuir. 2020;36:10764–71.

    Article  CAS  PubMed  Google Scholar 

  23. Wang B, Xiong DC, Ye XS. Direct C-H trifluoromethylation of glycals by photoredox catalysis. Org Lett. 2015;17:5698–701.

    Article  CAS  PubMed  Google Scholar 

  24. Re RN, Proessdorf JC, La Clair JJ, Subileau M, Burkart MD. Tailoring chemoenzymatic oxidation via in situ peracids. Org Biomol Chem. 2019;17:9418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benksim A, Beaupère D, Wadouachi A. A novel stereospecific synthesis of glycosyl cyanides from 1,2-O-sulfinyl derivatives. Org Lett. 2004;22:3913–5.

    Article  Google Scholar 

  26. Bemiller JN, Wing RE. Methyl terminal-4-O-methylmalto-oligosaccharides. Carbohydr Res. 1968;6:197–206.

    Article  Google Scholar 

  27. Azuma N, Sanda F, Takata T, Endo T. First observation of equilibrium polymerization of cyclic sulfite. J Polym Sci, Part A: Polym Chem. 1997;35:3235–40.

    Article  CAS  Google Scholar 

  28. Kricheldorf HR, Petermann O. New polymer syntheses. 110. Ring-opening polycondensation of two cyclic monomers-polyesters from ethylene sulfite and cyclic anhydrides. Macromolecules. 2001;34:8841–6.

    Article  CAS  Google Scholar 

  29. Hirose D, Gazvoda M, Košmrlj J, Taniguchi T. Advances and mechanistic insight on the catalytic Mitsunobu reaction using recyclable azo reagents. Chem Sci. 2016;7:5148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miyazaki R, Nargis M, Ihsan AB, Nakajima N, Hamada M, Koyama Y. Effects of glycon and temperature on self-assembly behaviors of α-galactosyl ceramide in water. Langmuir. 2021;37:7936–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ogasawara Toshiaki Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhito Koyama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, R., Suzuki, M., Shetty, S.S. et al. Brønsted acid-catalyzed ring-opening polycondensation of galactose-based cyclic sulfite. Polym J 55, 213–221 (2023). https://doi.org/10.1038/s41428-022-00724-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00724-x

Search

Quick links