Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adhesive-ligand-independent cell-shaping controlled by the lateral deformability of a condensed polymer matrix

Abstract

Cell adhesion on biomaterial surfaces has been extensively studied from the perspective of the adsorption properties of adhesive ligands, while recent research on mechanobiology has been revealing a critical role of the mechanical properties of the extracellular milieu in the control of cell adhesion, such as the stiffness and viscoelasticity of the matrix. Although the effects of the lateral mobility of an adhesive ligand have been intensively investigated in a model substrate with water-soluble polymer layers, less is known about those in the setting of lateral deformability of hydrophobic condensed polymer layers. In this study, to help clarify this issue, we used PNIPAAm-grafted substrates with a well-controlled degree of graft-polymerization (DGP) as a typical hydrophobic condensed polymer surface at a cell culture temperature of 37 °C. We observed a clear negative correlation between cell spreading and DGP of PNIPAAm regardless of the amount of fibronectin adsorbed on the substrates, which was found to be attributable to the lateral deformability of a condensed PNIPAAm layer based on lateral force microscopic analysis. The surface-lateral-deformation-induced modulation in stability and maturation of focal adhesion of the cells is discussed in relation to the matrix-strain-induced alteration of the density distribution of adsorbed adhesive ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J, Moscona A. Role of cell shape in growth control. Nature. 1978;273:345–9.

    Article  CAS  Google Scholar 

  2. Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM, et al. Engineering cell shape and function. Science. 1994;264:696–8.

    Article  CAS  Google Scholar 

  3. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6:483–95.

    Article  CAS  Google Scholar 

  4. DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol 1993;122:729–37.

    Article  CAS  Google Scholar 

  5. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276:1425–8.

    Article  CAS  Google Scholar 

  6. Ghosh K, Pan Z, Guan E, Ge S, Liu Y, Nakamura T, et al. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials. 2007;28:671–9.

    Article  CAS  Google Scholar 

  7. Winer JP, Janmey PA, McCormick ME, Funaki M. Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng - Part A. 2009;15:147–54.

    Article  CAS  Google Scholar 

  8. Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2001;2:793–805.

    Article  CAS  Google Scholar 

  9. Elosegui-Artola A, Trepat X, Roca-Cusachs P. Control of mechanotransduction by molecular clutch dynamics. Trends Cell Biol 2018;28:356–67.

    Article  CAS  Google Scholar 

  10. Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol 2019;20:457–73.

    Article  CAS  Google Scholar 

  11. Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584:535–46.

    Article  CAS  Google Scholar 

  12. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  Google Scholar 

  13. Trappmann B, Gautrot JE, Connelly JT, Strange DGT, Li Y, Oyen ML, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 2012;11:642–9.

    Article  CAS  Google Scholar 

  14. Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater 2014;13:645–52.

    Article  CAS  Google Scholar 

  15. Yang C, DelRio FW, Ma H, Killaars AR, Basta LP, Kyburz KA, et al. Spatially patterned matrix elasticity directs stem cell fate. Proc Natl Acad Sci U S A 2016;113:E4439–E4445.

    Article  CAS  Google Scholar 

  16. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 2010;9:518–26.

    Article  CAS  Google Scholar 

  17. Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 2016;15:326–34.

    Article  CAS  Google Scholar 

  18. Kuhlman W, Taniguchi I, Griffith LG, Mayes AM. Interplay between PEO tether length and ligand spacing governs cell spreading on RGD-modified PMMA-g-PEO comb copolymers. Biomacromolecules. 2007;8:3206–13.

    Article  CAS  Google Scholar 

  19. Attwood SJ, Cortes E, Haining AWM, Robinson B, Li D, Gautrot J, et al. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment. Sci Rep. 2016;6:34334.

    Article  CAS  Google Scholar 

  20. Gunnewiek MK, Ramakrishna SN, Di Luca A, Vancso GJ, Moroni L, Benetti EM. Stem-cell clinging by a thread: AFM measure of polymer-brush lateral deformation. Adv Mater Interfaces. 2016;3:1500456.

    Article  Google Scholar 

  21. Heskins M, Guillet JE. Solution Properties of Poly(N-isopropylacrylamide). J Macromol Sci Part A - Chem 1968;2:1441–55.

    Article  CAS  Google Scholar 

  22. Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma‐treated polystyrene dishes grafted with poly(N‐isopropylacrylamide). J Biomed Mater Res 1993;27:1243–51.

    Article  CAS  Google Scholar 

  23. Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials. 1995;16:297–303.

    Article  CAS  Google Scholar 

  24. Kidoaki S, Ohya S, Nakayama Y, Matsuda T. Thermoresponsive structural change of a poly(N-isopropylacrylamide) graft layer measured with an atomic force microscope. Langmuir. 2001;17:2402–7.

    Article  CAS  Google Scholar 

  25. Linhui L, Yang Z, Bo L, Changyou G. Fabrication of thermoresponsive polymer gradients for study of cell adhesion and detachment. Langmuir. 2008;24:13632–9.

    Article  Google Scholar 

  26. Takahashi H, Nakayama M, Yamato M, Okano T. Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules. 2010;11:1991–9.

    Article  CAS  Google Scholar 

  27. Zhao T, Chen H, Zheng J, Yu Q, Wu Z, Yuan L. Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: Effect of graft molecular weight. Colloids Surf B Biointerfaces. 2011;85:26–31.

    Article  CAS  Google Scholar 

  28. Otsu T, Yoshida M. Role of initiator‐transfer agent‐terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters. Makromol Chem Rapid Commun 1982;3:127–32.

    Article  CAS  Google Scholar 

  29. Nakayama Y, Matsuda T. Surface macromolecular architectural designs using photo-graft copolymerization based on photochemistry of benzyl N,N-diethyldithiocarbamate. Macromolecules. 1996;29:8622–30.

    Article  CAS  Google Scholar 

  30. Kidoaki S, Nakayama Y, Matsuda T. Measurement of the interaction forces between proteins and iniferter-based graft-polymerized surfaces with an atomic force microscope in aqueous media. Langmuir. 2001;17:1080–7.

    Article  CAS  Google Scholar 

  31. Harris AK, Wild P, Stopak D. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science. 1980;208:177–9.

    Article  CAS  Google Scholar 

  32. Xue C, Yonet-Tanyeri N, Brouette N, Sferrazza M, Braun PV, Leckband DE. Protein adsorption on poly(N -isopropylacrylamide) brushes: Dependence on grafting density and chain collapse. Langmuir. 2011;27:8810–8.

    Article  CAS  Google Scholar 

  33. Dai W, Zheng C, Zhao B, Chen K, Jia P, Yang J, et al. A negative correlation between water content and protein adsorption on polymer brushes. J Mater Chem B. 2019;7:2162–8.

    Article  CAS  Google Scholar 

  34. Hedayati M, Marruecos DF, Krapf D, Kaar JL, Kipper MJ. Protein adsorption measurements on low fouling and ultralow fouling surfaces: A critical comparison of surface characterization techniques. Acta Biomater 2020;102:169–80.

    Article  CAS  Google Scholar 

  35. Lehnert D, Wehrle-Haller B, David C, Weiland U, Ballestrem C, Imhof BA, et al. Cell behaviour on micropatterned substrata: Limits of extracellular matrix geometry for spreading and adhesion. J Cell Sci 2004;117:41–52.

    Article  CAS  Google Scholar 

  36. Liu W, Bonin K, Guthold M. Easy and direct method for calibrating atomic force microscopy lateral force measurements. Rev Sci Instrum 2007;78:063707.

    Article  Google Scholar 

  37. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, et al. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat Cell Biol 2001;3:466–72.

    Article  CAS  Google Scholar 

  38. Arnold M, Cavalcanti-Adam EA, Glass R, Blümmel J, Eck W, Kantlehner M, et al. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem. 2004;5:383–8.

    Article  CAS  Google Scholar 

  39. Schvartzman M, Palma M, Sable J, Abramson J, Hu X, Sheetz MP, et al. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett 2011;11:1306–12.

    Article  CAS  Google Scholar 

  40. Patla I, Volberg T, Elad N, Hirschfeld-Warneken V, Grashoff C, Fässler R, et al. Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nat Cell Biol 2010;12:909–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by AMED-CREST under Grant Number JP20gm0810002 and by a Grant-in-Aid for Scientific Research (18H04167) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Kidoaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masaike, S., Sasaki, S., Ebata, H. et al. Adhesive-ligand-independent cell-shaping controlled by the lateral deformability of a condensed polymer matrix. Polym J 54, 211–222 (2022). https://doi.org/10.1038/s41428-021-00577-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00577-w

Search

Quick links