Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Rapid Communication
  • Published:

Chiral amplification of supramolecular coassemblies of chiral and achiral acylhydrazine-functionalized biphenyls and their copolymers

Abstract

An optically active acylhydrazine-functionalized biphenyl (AHB) bearing L-alanine-derived oligoamide side chains with tris(alkoxy)phenyl residues at the periphery supramolecularly coassembles with its achiral AHB to form a one-dimensional helical nanofiber, in which intermolecular hydrogen bonding between the chiral/achiral oligoamide pendant units result in modest chiral amplification (the sergeants-and-soldiers effect). The chiral and achiral AHBs copolymerize with 2,6-pyridinedicarboxaldehyde to form preferred-handed helical copolymers with amplification of the helical sense excess driven by intramolecular hydrogen bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Feringa BL, van Delden RA. Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed. 1999;38:3418–38.

    Article  CAS  Google Scholar 

  2. Green MM, Reidy MP. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J Am Chem Soc. 1989;111:6452–4.

    Article  Google Scholar 

  3. Green MM, Peterson NC, Sato T, Teramoto A, Cook R, Lifson S. A helical polymer with a cooperative response to chiral information. Science. 1995;268:1860–6.

    Article  CAS  Google Scholar 

  4. Nakano T, Okamoto Y. Synthetic helical polymers: conformation and function. Chem Rev. 2001;101:4013–38.

    Article  CAS  Google Scholar 

  5. Cornelissen J, Rowan AE, Nolte RJM, Sommerdijk N. Chiral architectures from macromolecular building blocks. Chem Rev. 2001;101:4039–70.

    Article  CAS  Google Scholar 

  6. Suginome M, Yamamoto T, Nagata Y, Yamada T, Akai Y. Catalytic asymmetric synthesis using chirality-switchable helical polymer as a chiral ligand. Pure Appl Chem. 2012;84:1759–69.

    Article  CAS  Google Scholar 

  7. Fujiki M. Supramolecular chirality: solvent chirality transfer in molecular chemistry and polymer chemistry. Symmetry. 2014;6:677–703.

    Article  CAS  Google Scholar 

  8. Freire F, Quiñoá E, Riguera R. Supramolecular assemblies from poly(phenylacetylene)s. Chem Rev. 2016;116:1242–71.

    Article  CAS  Google Scholar 

  9. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev. 2016;116:13752–990.

    Article  CAS  Google Scholar 

  10. Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP. Stereochemical enhancement of polymer properties. Nat Rev Chem. 2019;3:514–35.

    Article  CAS  Google Scholar 

  11. Zhang C, Liu L, Okamoto Y. Enantioseparation using helical polyacetylene derivatives. TrAC Trends Anal Chem. 2020;123:115762.

    Article  CAS  Google Scholar 

  12. Mateos-Timoneda MA, Crego-Calama M, Reinhoudt DN. Supramolecular chirality of self-assembled systems in solution. Chem Soc Rev. 2004;33:363–72.

    Article  CAS  Google Scholar 

  13. Palmans ARA, Meijer EW. Amplification of chirality in dynamic supramolecular aggregates. Angew Chem Int Ed. 2007;46:8948–68.

    Article  CAS  Google Scholar 

  14. Pijper D, Feringa BL. Control of dynamic helicity at the macro- and supramolecular level. Soft Matter. 2008;4:1349–72.

    Article  CAS  Google Scholar 

  15. Zhang D-W, Zhao X, Li Z-T. Aromatic amide and hydrazide foldamer-based responsive host-guest systems. Acc Chem Res. 2014;47:1961–70.

    Article  CAS  Google Scholar 

  16. Xing P, Zhao Y. Controlling supramolecular chirality in multicomponent self-assembled systems. Acc Chem Res. 2018;51:2324–34.

    Article  CAS  Google Scholar 

  17. Adelizzi B, Van Zee NJ, de Windt LNJ, Palmans ARA, Meijer EW. Future of supramolecular copolymers unveiled by reflecting on covalent copolymerization. J Am Chem Soc. 2019;141:6110–21.

    Article  CAS  Google Scholar 

  18. Dorca Y, Greciano EE, Valera JS, Gómez R, Sánchez L. Hierarchy of asymmetry in chiral supramolecular polymers: toward functional, helical supramolecular structures. Chem - Eur J. 2019;25:5848–64.

    Article  CAS  Google Scholar 

  19. Haino T. Designer supramolecular polymers with specific molecular recognitions. Polym J. 2019;51:303–18.

    Article  CAS  Google Scholar 

  20. Ariga K, Mori T, Kitao T, Uemura T. Supramolecular chiral nanoarchitectonics. Adv Mater. 2020;32:1905657.

    Article  CAS  Google Scholar 

  21. Haino T, Hirano T. Supramolecular polymerization and functions of isoxazole ring monomers. Chem Lett. 2020;49:574–84.

    Article  CAS  Google Scholar 

  22. Hashim PK, Bergueiro J, Meijer EW, Aida T. Supramolecular polymerization: a conceptual expansion for innovative materials. Prog Polym Sci. 2020;105:101250.

    Article  CAS  Google Scholar 

  23. Yan X, Wang Q, Chen X, Jiang Y-B. Supramolecular chiral aggregates exhibiting nonlinear CD–ee dependence. Adv Mater. 2020;32:1905667.

    Article  Google Scholar 

  24. Kawabata S, Ousaka N, Yashima E. Allosteric regulation of metal-binding sites inside an optically-active helical foldamer and its tubular assemblies. Chem Commun. 2018;54:2417–20.

    Article  CAS  Google Scholar 

  25. For an example of acylhydrazone-linked polymers, see: Skene WG, Lehn J-MP. Dynamers: Polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc Natl Acad Sci USA 2004;101:8270–5.

    Article  CAS  Google Scholar 

  26. For an example of supramolecular polymers assembled from helical oligomers (foldamers), see: Brunsveld L, Meijer EW, Prince RB, Moore JS. Self-assembly of folded m-phenylene ethynylene oligomers into helical columns. J Am Chem Soc. 2001;123:7978–84.

    Article  CAS  Google Scholar 

  27. For one-dimensional supramolecular polymerization of one-handed helical polyisocyanides through end-to-end multiple hydrogen bonding interactions accompanied by a remarkable amplification of the helical handedness excess, see: Wada Y, Shinohara K, Asakawa H, Matsui S, Taima T, Ikai T. One-step synthesis of one-dimensional supramolecular assemblies composed of helical macromolecular building blocks. J Am Chem Soc. 2019;141:13995–4002.

    Article  CAS  Google Scholar 

  28. Helmich F, Smulders MMJ, Lee CC, Schenning APHJ, Meijer EW. Effect of stereogenic centers on the self-sorting, depolymerization, and atropisomerization kinetics of porphyrin-based aggregates. J Am Chem Soc. 2011;133:12238–46.

    Article  CAS  Google Scholar 

  29. Ikeda M. Stimuli-responsive supramolecular systems guided by chemical reactions. Polym J. 2019;51:371–80.

    Article  CAS  Google Scholar 

  30. Zhang L, Wang HX, Li S, Liu M. Supramolecular chiroptical switches. Chem Soc Rev. 2020;49:9095–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by JSPS KAKENHI (Grant-in-Aid for Specially Promoted Research, No. 18H05209 (EY and TI)). SK would like to acknowledge support from a JSPS Research Fellowship for Young Scientists (No. 19J12012).

Author information

Authors and Affiliations

Authors

Contributions

NO conceived the idea. TI directed the project and designed the experiments. EY directed the project and supervised the research. SK principally performed the experiments. SK and SO conducted the NMR and SEC experiments. TI, NO, and EY performed data analysis. TI and EY cowrote the manuscript. All authors discussed the results and edited the manuscript.

Corresponding authors

Correspondence to Tomoyuki Ikai or Eiji Yashima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikai, T., Kawabata, S., Okuda, S. et al. Chiral amplification of supramolecular coassemblies of chiral and achiral acylhydrazine-functionalized biphenyls and their copolymers. Polym J 53, 1475–1480 (2021). https://doi.org/10.1038/s41428-021-00550-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00550-7

Search

Quick links