Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Boosting sericin extraction through alternative silk sources

Abstract

Silk sericin (SS) is a natural polymer widely studied in the design of biodegradable materials for cosmetic, biomedical, food, and chemical applications. This work was designed to explore the molecular and structural characteristics of SS extracted from different silk sources with different processing degrees: high-quality cocoons (NCs), defective cocoons (DCs), and raw silk yarn (Y). The last two sources have been less studied. SS solutions were obtained from each source using the high-temperature and high-pressure degumming method (HTHP). The molecular weight distribution and amino acid composition of SS extracts were determined using gel permeation chromatography (GPC) and reversed-phase chromatography (RP HPLC), respectively. SS films were formed from each solution and then characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (NMR), and differential scanning calorimetry (DSC). Water uptake and degradation of SS films were also evaluated. The molecular characteristics of SS extracts were related to the processing degree of the silk source. Moreover, the properties of SS films seemed to be dominated by the primary structure and the presence of natural impurities in each extract. The results suggest that silk sources could be selected ad hoc to design SS materials with distinctive properties for specific applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mondal M, Trivedy K, Kumar SN. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., - a review. Casp J Env Sci. 2007;5:63–76.

    Google Scholar 

  2. Veiga A, Castro F, Rocha F, Oliveira AL. Recent Advances in Silk Sericin/Calcium Phosphate Biomaterials. Front Mater. 2020;7. https://doi.org/10.3389/fmats.2020.00024.

  3. Gupta D, Agrawal A, Chaudhary H, Gulrajani M, Gupta C. Cleaner process for extraction of sericin using infrared. J Clean Prod. 2013;52:488–94. https://doi.org/10.1016/J.JCLEPRO.2013.03.016

    Article  CAS  Google Scholar 

  4. Dash BC, Mandal BB, Kundu SC. Silk gland sericin protein membranes: fabrication and characterization for potential biotechnological applications. J Biotechnol. 2009;144:321–9. https://doi.org/10.1016/j.jbiotec.2009.09.019

    Article  CAS  PubMed  Google Scholar 

  5. da Silva TL, da Silva AC, Vieira MGA, Gimenes ML, da Silva MGC. Biosorption study of copper and zinc by particles produced from silk sericin – alginate blend: evaluation of blend proportion and thermal cross-linking process in particles production. J Clean Prod. 2016;137:1470–8. https://doi.org/10.1016/j.jclepro.2015.05.067

    Article  CAS  Google Scholar 

  6. Ahsan F, Ansari T, Usmani S, Bagga P. An insight on silk protein sericin: from processing to biomedical application. Drug Res (Stuttg). 2018;68:317–27. https://doi.org/10.1055/s-0043-121464

    Article  CAS  Google Scholar 

  7. Kunz RI, Brancalhão RMC, Ribeiro LDFC, Natali MRM. Silkworm sericin: properties and biomedical applications. Biomed Res Int. 2016;2016:1–19. https://doi.org/10.1155/2016/8175701

    Article  CAS  Google Scholar 

  8. Akai H. The structure and ultrastructure of the silk gland. Experientia. 1983;39:443–9. https://doi.org/10.1007/BF01965158

    Article  Google Scholar 

  9. Shaw JTB, Smith SG. Amino-acids of Silk Sericin. Nature. 1951;168:745–745. https://doi.org/10.1038/168745a0

    Article  CAS  Google Scholar 

  10. Mercer EH, Meyer FH. The X-Ray Pattern of Sericin and Silk Wax from Bombyx mori. Text Res J. 1953;23:243–6. https://doi.org/10.1177/004051755302300404

    Article  CAS  Google Scholar 

  11. Komatsu K. Studies on dissolution behaviors and structural characteristics of silk sericin. Bull Seric Exp Stn. 1975;26:135–256.

    CAS  Google Scholar 

  12. Sothornvit R, Chollakup R, Suwanruji P. Extracted sericin from silk waste for film formation. Songklanakarin J Sci Technol. 2010;32:17–22.

    CAS  Google Scholar 

  13. Gupta D, Agrawal A, Rangi A. Extraction and characterization of silk sericin. Indian J Fibre Text Res. 2014;39:364–72.

    CAS  Google Scholar 

  14. Lee YW. Silk Reeling and Testing Manual. Rome: Food and Agriculture Organization of the United Nations; 1999.

  15. Babu KM. Natural textile fibres: animal and silk fibres. In: Rose Sinclair, editor. Textiles and Fashion, Sawston: Woodhead Publishing; 2015. p. 57–78. https://doi.org/10.1016/B978-1-84569-931-4.00003-9.

  16. Wu MH, Yue JX, Zhang YQ. Ultrafiltration recovery of sericin from the alkaline waste of silk floss processing and controlled enzymatic hydrolysis. J Clean Prod. 2014;76:154–60. https://doi.org/10.1016/j.jclepro.2014.03.068

    Article  CAS  Google Scholar 

  17. Barajas-Gamboa JA, Alvarez-López C, Restrepo Osorio A, Serpa-Guerra AM. Sericin applications: a globular silk protein. Ing y Compet. 2016;18:93–103.

    Google Scholar 

  18. Li D, Amoah PK, Chen B, Xue C, Hu X, Gao K, et al. Feasibility of Growing Chlorella sorokiniana on Cooking Cocoon Wastewater for Biomass Production and Nutrient Removal. Appl Biochem Biotechnol. 2019;188:663–76. https://doi.org/10.1007/s12010-018-02942-7

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Shi W, Wang W, Zhu H. The extraction of sericin protein from silk reeling wastewater by hollow fiber nanofiltration membrane integrated process. Sep Purif Technol. 2015;146:342–50. https://doi.org/10.1016/j.seppur.2015.04.004

    Article  CAS  Google Scholar 

  20. Wang R, Zhu Y, Shi Z, Jiang W, Liu X, Ni QQ. Degumming of raw silk via steam treatment. J Clean Prod. 2018;203:492–7. https://doi.org/10.1016/j.jclepro.2018.08.286

    Article  CAS  Google Scholar 

  21. Ghosh S, Rao RS, Nambiar KS, Haragannavar VC, Augustine D, Sowmya SV. Sericin, a dietary additive: Mini review. J Med Radio Pathol Surg. 2019;6:4–8. https://doi.org/10.15713/ins.jmrps.153

    Article  Google Scholar 

  22. Gulrajani ML, Purwar R, Prasad RK, Joshi M. Studies on structural and functional properties of sericin recovered from silk degumming liquor by membrane technology. J Appl Polym Sci. 2009;113:2796–804. https://doi.org/10.1002/app.29925

    Article  CAS  Google Scholar 

  23. Arango MC, Montoya Y, Peresin MS, Bustamante J, Álvarez-López C. Silk sericin as a biomaterial for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2020;2020:1–15. https://doi.org/10.1080/00914037.2020.1785454

    Article  CAS  Google Scholar 

  24. Castrillón Martínez DC, Zuluaga CL, Restrepo-Osorio A, Álvarez-López C. Characterization of sericin obtained from cocoons and silk yarns. Procedia Eng. 2017;200:377–83. https://doi.org/10.1016/j.proeng.2017.07.053

    Article  CAS  Google Scholar 

  25. Arteaga YA, Llanos GAH, Martínez DC, Aristizábal MC, Gamboa JAB, López CÁ. Properties of colombian silk sericine. Rev Lasallista Investig. 2018;15:57–66. https://doi.org/10.22507/rli.v15n1a5

    Article  Google Scholar 

  26. Arango MC, Álvarez-López C. Effect of freezing temperature on the properties of lyophilized silk sericin scaffold. Mater Res Exp. 2019;6. https://doi.org/10.1088/2053-1591/ab3594.

  27. Wu L, Liu M. Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr Polym. 2008;72:240–7. https://doi.org/10.1016/j.carbpol.2007.08.020

    Article  CAS  Google Scholar 

  28. Capar G, Aygun SS, Gecit MR. Separation of sericin from fatty acids towards its recovery from silk degumming wastewaters. J Memb Sci. 2009;342:179–89. https://doi.org/10.1016/j.memsci.2009.06.039

    Article  CAS  Google Scholar 

  29. Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, et al. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res Part B Appl Biomater. 2011;99B:89–101. https://doi.org/10.1002/jbm.b.31875

    Article  CAS  Google Scholar 

  30. Cozza N, Bonani W, Motta A, Migliaresi C. Evaluation of alternative sources of collagen fractions from Loligo vulgaris squid mantle. Int J Biol Macromol. 2016;87:504–13. https://doi.org/10.1016/j.ijbiomac.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  31. Bucciarelli A, Chiera S, Quaranta A, Yadavalli VK, Motta A, Maniglio D. A Thermal-Reflow-Based Low-Temperature, High-Pressure Sintering of Lyophilized Silk Fibroin for the Fast Fabrication of Biosubstrates. Adv Funct Mater. 2019;29:1–13. https://doi.org/10.1002/adfm.201901134

    Article  CAS  Google Scholar 

  32. Jaramillo‐Quiceno N, Restrepo‐Osorio A. Water‐annealing treatment for edible silk fibroin coatings from fibrous waste. J Appl Polym Sci. 2020;137:48505 https://doi.org/10.1002/app.48505

    Article  CAS  Google Scholar 

  33. Callone E, Dirè S, Hu X, Motta A. Processing Influence on Molecular Assembling and Structural Conformations in Silk Fibroin: elucidation by Solid-State NMR. ACS Biomater Sci Eng. 2016;2:758–67. https://doi.org/10.1021/acsbiomaterials.5b00507

    Article  CAS  PubMed  Google Scholar 

  34. Teramoto H, Kakazu A, Yamauchi K, Asakura T. Role of Hydroxyl Side Chains in Bombyx mori Silk Sericin in Stabilizing Its Solid Structure. Macromolecules. 2007;40:1562–9. https://doi.org/10.1021/ma062604e

    Article  CAS  Google Scholar 

  35. Yamdej R, Pangza K, Srichana T, Aramwit P. Superior physicochemical and biological properties of poly(vinyl alcohol)/sericin hydrogels fabricated by a non-toxic gamma-irradiation technique. J Bioact Compat Polym. 2017;32:32–44. https://doi.org/10.1177/0883911516653145

    Article  CAS  Google Scholar 

  36. Puerta M, Peresin MS, Restrepo-Osorio A. Effects of Chemical Post-treatments on Structural and Physicochemical Properties of Silk Fibroin Films Obtained From Silk Fibrous Waste. Front Bioeng Biotechnol. 2020;8:1–11. https://doi.org/10.3389/fbioe.2020.523949

    Article  Google Scholar 

  37. Wang YJ, Zhag YQ. Three-layered sericins around the silk fibroin fiber from Bombyx mori cocoon and their amino acid composition. Adv Mater Res. 2011;175–176:158–63.

    Article  Google Scholar 

  38. Tamada Y, Sano M, Niwa K, Imai T, Yoshino G. Sulfation of silk sericin and anticoagulant activity of sulfated sericin. J Biomater Sci Polym Ed. 2004;15:971–80. https://doi.org/10.1163/1568562041526469

    Article  CAS  PubMed  Google Scholar 

  39. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T. The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci. 2010;11:2200–11. https://doi.org/10.3390/ijms11052200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Correa CAC. Colombia Emerges as a Leading Country to Develop Sericulture. J Nat Fibers. 2004;1:11–20. https://doi.org/10.1300/J395v01n01_02

    Article  Google Scholar 

  41. Jena K, Pandey JP, Kumari R, Sinha AK, Gupta VP, Singh GP. Tasar silk fiber waste sericin: new source for anti-elastase, anti-tyrosinase and anti-oxidant compounds. Int J Biol Macromol. 2018;114:1102–8. https://doi.org/10.1016/j.ijbiomac.2018.03.058

    Article  CAS  PubMed  Google Scholar 

  42. Jena K, Pandey JP, Kumari R, Sinha AK, Gupta VP, Singh GP. Free radical scavenging potential of sericin obtained from various ecoraces of tasar cocoons and its cosmeceuticals implication. Int J Biol Macromol. 2018;120:255–62. https://doi.org/10.1016/j.ijbiomac.2018.08.090

    Article  CAS  PubMed  Google Scholar 

  43. Wu J-H, Wang Z, Xu S-Y. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem. 2007;103:1255–62. https://doi.org/10.1016/j.foodchem.2006.10.042

    Article  CAS  Google Scholar 

  44. Sen K, Babu KM. Studies on Indian Silk. I. Macrocharacterization and Analysis of Amino Acid Composition. J Appl Polym Sci. 2004;92:1080–97. https://doi.org/10.1002/app.13609

    Article  CAS  Google Scholar 

  45. Azeredo HMC, Waldron KW. Crosslinking in polysaccharide and protein films and coatings for food contact - A review. Trends Food Sci Technol. 2016;52:109–22. https://doi.org/10.1016/j.tifs.2016.04.008

    Article  CAS  Google Scholar 

  46. Yang M, Shuai Y, Zhou G, Mandal N, Zhu L, Mao C. Tuning Molecular Weights of Bombyx mori (B. mori) Silk Sericin to Modify Its Assembly Structures and Materials Formation. ACS Appl Mater Interfac. 2014;6:13782–9. https://doi.org/10.1021/am503214g

    Article  CAS  Google Scholar 

  47. Park CJ, Ryoo J, Ki CS, Kim JW, Kim IS, Bae DG, et al. Effect of molecular weight on the structure and mechanical properties of silk sericin gel, film, and sponge. Int J Biol Macromol. 2018;119:821–32. https://doi.org/10.1016/j.ijbiomac.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  48. Siritientong T, Bonani W, Motta A, Migliaresi C, Aramwit P. The effects of Bombyx mori silk strain and extraction time on the molecular and biological characteristics of sericin. Biosci Biotechnol Biochem. 2016;80:241–9. https://doi.org/10.1080/09168451.2015.1088375

    Article  CAS  PubMed  Google Scholar 

  49. Chirila TV, Suzuki S, McKirdy NC. Further development of silk sericin as a biomaterial: comparative investigation of the procedures for its isolation from Bombyx mori silk cocoons. Prog Biomater. 2016;5:135–45. https://doi.org/10.1007/s40204-016-0052-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cao T-T, Zhang Y-Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater Sci Eng C. 2016;61:940–52. https://doi.org/10.1016/j.msec.2015.12.082

    Article  CAS  Google Scholar 

  51. Zhang Y-Q. Applications of natural silk protein sericin in biomaterials. Biotechnol Adv. 2002;20:91–100. https://doi.org/10.1016/S0734-9750(02)00003-4

    Article  CAS  PubMed  Google Scholar 

  52. Silva VRR, Ribani M, Gimenes MLL, Scheer a PP. High molecular weight sericin obtained by high temperature and ultrafiltration process. Procedia Eng. 2012;42:833–41. https://doi.org/10.1016/j.proeng.2012.07.476

    Article  CAS  Google Scholar 

  53. Padamwar MN, Pawar AP. Silk sericin and its applications: a review. J Sci Ind Res (India). 2004;63:323–9.

    CAS  Google Scholar 

  54. Garel A, Deleage G, Prudhomme JC. Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser 1B cDNA. Insect Biochem Mol Biol. 1997;27:469–77. https://doi.org/10.1016/S0965-1748(97)00022-2

    Article  CAS  PubMed  Google Scholar 

  55. Teramoto H, Kakazu A, Asakura T. Native structure and degradation pattern of silk sericin studied by 13C NMR spectroscopy. Macromolecules. 2006;39:6–8. https://doi.org/10.1021/ma0521147

    Article  CAS  Google Scholar 

  56. Vidart JMM, Silva TL, da, Rosa PCP, Vieira MGA, Silva MGCda. Development of sericin/alginate particles by ionic gelation technique for the controlled release of diclofenac sodium. J Appl Polym Sci. 2018;135:1–12. https://doi.org/10.1002/app.45919

    Article  CAS  Google Scholar 

  57. Belton DJ, Plowright R, Kaplan DL, Perry CC. A robust spectroscopic method for the determination of protein conformational composition – Application to the annealing of silk. Acta Biomater. 2018;73:355–64. https://doi.org/10.1016/j.actbio.2018.03.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shimanovich U, Ruggeri FS, De Genst E, Adamcik J, Barros TP, Porter D, et al. Silk micrococoons for protein stabilisation and molecular encapsulation. Nat Commun. 2017;8:1–9. https://doi.org/10.1038/ncomms15902

    Article  CAS  Google Scholar 

  59. Asakura T, Endo M, Tasei Y, Ohkubo T, Hiraoki T. Hydration of Bombyx mori silk cocoon, silk sericin and silk fibroin and their interactions with water as studied by 13C NMR and 2H NMR relaxation. J Mater Chem B. 2017;5:1624–32. https://doi.org/10.1039/c6tb03266d

    Article  CAS  PubMed  Google Scholar 

  60. Dill K, Allerhand A. Studies of the carbohydrate residues of glycoproteins by natural abundance carbon 13 magnetic resonance spectroscopy. Glucoamylase from Aspergillus niger. J Biol Chem. 1979;254:4524–31.

    Article  CAS  Google Scholar 

  61. Sinohara H, Asano Y. Amino Sugar Metabolism in the Silkworm, Bombyx mori. J Biochem. 1968;63:8–13. https://doi.org/10.1093/oxfordjournals.jbchem.a128751

    Article  CAS  Google Scholar 

  62. Sinohara H, Asano Y. Carbohydrate Content of Fibroin and Sericin of the Silkworm, Bombyx mori. J Biochem. 1967;62:129–30. https://doi.org/10.1093/oxfordjournals.jbchem.a128625

    Article  CAS  Google Scholar 

  63. Yao J, Ohgo K, Sugino R, Kishore R, Asakura T. Structural Analysis of Bombyx mori Silk Fibroin Peptides with Formic Acid Treatment Using High-Resolution Solid-State 13 C NMR Spectroscopy. Biomacromolecules. 2004;5:1763–9. https://doi.org/10.1021/bm049831d

    Article  CAS  PubMed  Google Scholar 

  64. Souillac PO, Middaugh CR, Rytting JH. Investigation of protein/carbohydrate interactions in the dried state. 2. Diffuse reflectance FTIR studies. Int J Pharm. 2002;235:207–18. https://doi.org/10.1016/S0378-5173(01)00987-5

    Article  CAS  PubMed  Google Scholar 

  65. Zhang H, Deng L, Yang M, Min S, Yang L, Zhu L. Enhancing effect of glycerol on the tensile properties of Bombyx mori cocoon sericin films. Int J Mol Sci. 2011;12:3170–81. https://doi.org/10.3390/ijms12053170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Motta A, Barbato B, Foss C, Torricelli P, Migliaresi C. Stabilization of Bombyx mori silk fibroin/sericin films by crosslinking with PEG-DE 600 and genipin. J Bioact Compat Polym. 2011;26:130–43. https://doi.org/10.1177/0883911511400251

    Article  CAS  Google Scholar 

  67. Mandal BB, Ghosh B, Kundu SC. Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications. Int J Biol Macromol. 2011;49:125–33. https://doi.org/10.1016/j.ijbiomac.2011.03.015

    Article  CAS  PubMed  Google Scholar 

  68. Anghileri A, Lantto R, Kruus K, Arosio C, Freddi G. Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates. J Biotechnol. 2007;127:508–19. https://doi.org/10.1016/j.jbiotec.2006.07.021

    Article  CAS  PubMed  Google Scholar 

  69. Lungu A, Albu MG, Stancu IC, Florea NM, Vasile E, Iovu H. Superporous collagen-sericin scaffolds. J Appl Polym Sci. 2013;127:2269–79. https://doi.org/10.1002/app.37934

    Article  CAS  Google Scholar 

  70. Rocha LKH, Favaro LIL, Rios AC, Silva EC, Silva WF, Stigliani TP, et al. Sericin from Bombyx mori cocoons. Part I: Extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochem. 2017;61:163–77. https://doi.org/10.1016/j.procbio.2017.06.019

    Article  CAS  Google Scholar 

  71. Lu Q, Hu X, Wang X, Kluge JA, Lu S, Cebe P, et al. Water-insoluble silk films with silk I structure. Acta Biomater. 2010;6:1380–7. https://doi.org/10.1016/j.actbio.2009.10.041

    Article  CAS  PubMed  Google Scholar 

  72. Abiad MG, Campanella OH, Carvajal MT. Effect of Spray Drying Conditions on the Physicochemical Properties and Enthalpy Relaxation of α-Lactose. Int J Food Prop. 2014;17:1303–16. https://doi.org/10.1080/10942912.2012.710287

    Article  CAS  Google Scholar 

  73. Alamri MS, Mohamed AA, Xu J, Kalyanaraman P, Rayas-Duarte P. Enthalpic Relaxation of Vital and Protease-Treated Wheat Gluten. Int J Food Prop. 2014;17:187–203. https://doi.org/10.1080/10942912.2011.619026

    Article  CAS  Google Scholar 

  74. Drozdov AD. Enthalpy recovery in semicrystalline polymers. Macromol Rapid Commun. 2000;21:1238–43. https://doi.org/10.1002/1521-3927(20001101)21. 17<1238:AID-MARC1238>3.0.CO;2-9

    Article  CAS  Google Scholar 

  75. Xiao H, Shmelev K, Sun L, Gil E-S, Park S-H, Cebe P, et al. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing. Biomacromolecules. 2011;12:1686–96. https://doi.org/10.1021/bm200062a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Organizzazione Internazionale Italo-Latino Americana (IILA) and the Directorate General for Development Cooperation of the Italian Ministry of Foreign Affairs (DGCS/MAE) for their financial support through the Scholarship program for Latin American citizens. The authors also express special thanks to Professor AM and all BIOtech Research Center members for receiving NJ-Q as a visiting Ph.D. researcher. The Colombian Ministry of Science, Technology, and Innovation (MINCIENCIAS) is also recognized for its financial support through project No. 121084468254 and the Ph.D. Grant 785 of 2017.

Author information

Authors and Affiliations

Authors

Contributions

S.D., C.A.L. and A.M. conceived and supervised the experiments. N.J.Q. and E.C. conceived and performed the experiments. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Natalia Jaramillo-Quiceno.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo-Quiceno, N., Callone, E., Dirè, S. et al. Boosting sericin extraction through alternative silk sources. Polym J 53, 1425–1437 (2021). https://doi.org/10.1038/s41428-021-00539-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00539-2

This article is cited by

Search

Quick links