Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Application of the Hofmeister series to the structure and properties of poly(vinyl alcohol) films containing metal salts

Abstract

The effects of ions on the structures and properties of poly(vinyl alcohol) films were systematically studied using various metal salts. Although cations play an important role, the data obtained in this study demonstrated that the strong ion–dipole interactions between anions and poly(vinyl alcohol) chains also have a significant impact on crystallinity and glass transition temperature. For the first time, the study revealed that the impact of the added salts follows the Hofmeister series. Investigations of various bromine salt cations revealed that Li+ is more effective at disrupting the water structure than either Na+ or K+. Further experiments using lithium salts with various anion species verified that lithium salts play an important role in determining the crystallinity and hydrogen bonding within aqueous poly(vinyl alcohol) and therefore affect the dynamic mechanical properties of films. This phenomenon clearly follows the order LiClO4 > LiI > LiBr > LiNO3 > LiCl, which corresponds to the Hofmeister series.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen N, Li L, Wang Q. New technology for thermal processing of poly (vinyl alcohol). Plast Rubber Compos. 2007;36:283–90.

    Article  Google Scholar 

  2. Patachia S, Florea C, Friedrich CHR, Thomann Y. Tailoring of poly (vinyl alcohol) cryogels properties by salts addition. Express Polym Lett. 2009;3:320–31.

    Article  CAS  Google Scholar 

  3. Ishak ZM, Berry JP. Hygrothermal aging studies of short carbon fiber reinforced nylon 6.6. J Appl Polym Sci. 1994;51:2145–55.

    Article  Google Scholar 

  4. Gupta RP, Laible RC. Study of hydrogen bonding in poly (vinyl alcohol) by a nuclear magnetic resonance method. J Polym Sci A. 1965;3:3951–6.

    CAS  Google Scholar 

  5. Xu YZ, Sun WX, Li WH, Hu XB, Zhou HB, Weng SF, et al. Investigation on the interaction between polyamide and lithium salts. J Appl Polym Sci. 2000;77:2685–90.

    Article  CAS  Google Scholar 

  6. Wu Y, Xu Y, Wang D, Zhao Y, Weng S, Xu D, et al. FT‐IR spectroscopic investigation on the interaction between nylon 66 and lithium salts. J Appl Polym Sci. 2004;91:2869–75.

    Article  CAS  Google Scholar 

  7. Sato Y, Ito A, Maeda S, Yamaguchi M. Structure and optical properties of transparent polyamide 6 containing lithium bromide. J Polym Sci B: Polym Phys. 2018;56:1513–20.

    Article  CAS  Google Scholar 

  8. Saari RA, Maeno R, Marujiwat W, Nasri MS, Matsumura K, Yamaguchi M, et al. Modification of poly (vinyl alcohol) fibers with lithium bromide. Polymer. 2020;123193 (in press).

  9. Tretinnikov ON, Zagorskaya SA. Determination of the degree of crystallinity of poly (vinyl alcohol) by FTIR spectroscopy. J Appl Spectrosc. 2012;79:521–6.

    Article  CAS  Google Scholar 

  10. Zhang LZ, Wang YY, Wang CL, Xiang H. Synthesis and characterization of a PVA/LiCl blend membrane for air dehumidification. J Membr Sci. 2008;308:198–206.

    Article  CAS  Google Scholar 

  11. Wang B, Lu C, Hu J, Lu W. Property improvements of EVOH by enhancing the hydrogen bonding. Plast Rubber Compos. 2020;49:18–24.

    Article  CAS  Google Scholar 

  12. Miyagawa A, Ayerdurai V, Nobukawa S, Yamaguchi M. Viscoelastic properties of poly(methyl methacrylate) with high glass transition temperature by lithium salt addition. J Polym Sci B: Polym Phys. 2016;54:2388–94.

    Article  CAS  Google Scholar 

  13. Ito A, Maeno R, Yamaguchi M. Control of optical and mechanical properties of poly(methyl methacrylate) by introducing lithium salt. Opt Mater. 2018;83:152–6.

    Article  CAS  Google Scholar 

  14. Ito A, Phulkerd P, Ayerdurai V, Soga M, Courtoux A, Miyagawa A, et al. Enhancement of the glass transition temperature of poly (methyl methacrylate) by salt. Polym J. 2018;50:857–63.

    Article  CAS  Google Scholar 

  15. Sako T, Miyagawa A, Yamaguchi M. Modulus enhancement of polycarbonate by addition of lithium perchlorate. J Appl Polym Sci. 2017;134:44882–7.

    Article  Google Scholar 

  16. Tomie S, Tsugawa N, Yamaguchi M. Modifying the thermal and mechanical properties of poly (lactic acid) by adding lithium trifluoromethanesulfonate. J Polym Res. 2018;25:206–12.

    Article  Google Scholar 

  17. Tsugawa N, Ito A, Yamaguchi M. Effect of lithium salt addition on the structure and optical properties of PMMA/PVB blends. Polymer 2018;146:242–8.

    Article  CAS  Google Scholar 

  18. Kim JS, Jackman RJ, Eisenberg A. Filler and percolation behavior of ionic aggregates in styrene-sodium methacrylate ionomers. Macromolecules 1994;27:2789–803.

    Article  CAS  Google Scholar 

  19. Muta H, Kawauchi S, Satoh M. Ion-specific swelling behavior of uncharged poly (acrylic acid) gel. Colloid Polym Sci. 2003;282:149–55.

    Article  CAS  Google Scholar 

  20. Mori M, Wang J, Satoh M. Anti-Hofmeister series properties found for a polymer having a π electron system and acidic protons. Colloid Polym Sci. 2009;287:123–7.

    Article  CAS  Google Scholar 

  21. Wang J, Satoh M. Novel PVA-based polymers showing an anti-Hofmeister series property. Polymer 2009;50:3680–5.

    Article  CAS  Google Scholar 

  22. Ahad N, Saion E, Gharibshahi E. Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte. J Nanomater. 2012;2012:94.

    Article  Google Scholar 

  23. Saari RA, Maeno R, Tsuyuguchi R, Marujiwat W, Phulkerd P, Yamaguchi M, et al. Impact of lithium halides on rheological properties of aqueous solution of poly(vinyl alcohol). J Polym Res. 2020;27:1–8.

    Article  Google Scholar 

  24. Mohsin M, Hossin A, Haik Y. Thermal and mechanical properties of poly (vinyl alcohol) plasticized with glycerol. J Appl Polym Sci. 2011;122:3102–9.

    Article  CAS  Google Scholar 

  25. Bhajantri RF, Ravindrachary V, Harisha A, Crasta V, Nayak SP, Poojary B, et al. Microstructural studies on BaCl2 doped poly (vinyl alcohol). Polymer. 2006;47:3591–8.

    Article  CAS  Google Scholar 

  26. Nakano T, Yuasa H, Kanaya Y. Suppression of agglomeration in fluidized bed coating. III. Hofmeister series in suppression of particle agglomeration. Pharm Res. 1999;16:1616–20.

    Article  CAS  Google Scholar 

  27. Okazaki Y, Ishizuki K, Kawauchi S, Satoh M, Komiyama J. Ion-specific swelling and deswelling behaviors of ampholytic polymer gels. Macromolecules. 1996;29:8391–7.

    Article  CAS  Google Scholar 

  28. Tretinnikov ON, Zagorskaya SA. Effect of inorganic salts on the crystallinity of polyvinyl alcohol. J Appl Spectros. 2012;78:904–8.

    Article  CAS  Google Scholar 

  29. Wang X, Park SY, Yoon KH, Lyoo WS, Min BG. The effect of multi-walled carbon nanotubes on the molecular orientation of poly (vinyl alcohol) in drawn composite films. Fiber Polym. 2006;7:323–7.

    Article  CAS  Google Scholar 

  30. Jang J, Lee DK. Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer. 2003;44:8139–46.

    Article  CAS  Google Scholar 

  31. Yang CC. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr Sci. 2007;288:51–60.

    Article  CAS  Google Scholar 

  32. Jiang X, Li H, Luo Y, Zhao Y, Hou L. Studies of the plasticizing effect of different hydrophilic inorganic salts on starch/poly (vinyl alcohol) films. Int J Biol Macromol. 2016;82:223–30.

    Article  CAS  Google Scholar 

  33. Akahane T, Mochizuki T. Planar orientation of molecular chains in crystalline polymer films. J Polym Sci Pol Lett. 1970;8:487–91.

    Article  CAS  Google Scholar 

  34. Hodge RM, Edward GH, Simon GP. Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer. 1996;37:1371–6.

    Article  CAS  Google Scholar 

  35. Mráček A, Varhaníková J, Lehocký M, Gřundělová L, Pokopcová A, Velebný V, et al. The influence of Hofmeister series ions on Hyaluronan swelling and viscosity. Molecules. 2008;13:1025–34.

    Article  Google Scholar 

  36. Buslov DK, Sushko NI, Tretinnikov ON. IR investigation of hydrogen bonds in weakly hydrated films of poly (vinyl alcohol). Polym Sci Ser A. 2011;53:1121–7.

    Article  CAS  Google Scholar 

  37. Wang H, Fang P, Chen Z, Wang S. Synthesis and characterization of CdS/PVA nanocomposite films. Appl Surf Sci. 2007;253:8495–9.

    Article  CAS  Google Scholar 

  38. Aly EH, Hassan MA, Sheha E. Investigations of (PVA) 0.7 (NaBr) 0.3 (H2SO4) xM solid acid polymer electrolyte using positron annihilation lifetime spectroscopy. J Polym Sci B. 2010;48:2038–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the COI program of JST (JPMJCE 1315), “Construction of next-generation infrastructure system using innovative materials.” Realization of safe and secure society that can coexist with the earth for centuries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yamaguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saari, R.A., Nasri, M.S., Marujiwat, W. et al. Application of the Hofmeister series to the structure and properties of poly(vinyl alcohol) films containing metal salts. Polym J 53, 557–564 (2021). https://doi.org/10.1038/s41428-020-00450-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00450-2

This article is cited by

Search

Quick links