Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Note
  • Published:

Reexamination of the equilibrium melting temperature of natural rubber crystals

Abstract

The equilibrium melting temperature (\(T_{\mathrm{m}}^0\)) of natural rubber crystals was reexamined by the Hoffman–Weeks plot and the Gibbs–Thomson plot using the lamellar thickness obtained from the same sample as the one used for the measurement of melting temperature. The sample was prepared from deproteinized latex. As a result, the \(T_{\mathrm{m}}^0\) of NR was estimated to be 61 °C. At the same time, the fold-surface free energy was estimated to be 0.046 Jm−2. These values should be more reliable than the previously assumed values.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Roberts DE, Mandelkern L. Thermodynamics of crystallization in high polymers: natural rubbers. J Am Chem Soc. 1955;77:781–6.

    Article  CAS  Google Scholar 

  2. Tanaka Y. Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem Technol. 2001;74:355–75.

    Article  CAS  Google Scholar 

  3. Keller A. A note on single crystals in polymers -evidence for a folded chain configuration. Philos Mag. 1957;2:1171–5.

    Article  CAS  Google Scholar 

  4. Krigbaum WR, Dawkins JV, Via GH, Belta YI. Effect of strain on the thermodynamic melting temperature of polymers. J Polym Sci, Part A-2. 1966;4:475–89.

    Article  CAS  Google Scholar 

  5. Dalal EN, Taylor KD, Philips PJ. The equilibrium melting temperature of cis-polyisoprene. Polymer. 1983;24:1623–30.

    Article  CAS  Google Scholar 

  6. Kawahara S, Takano K, Yunyongwattanakorn J, Isono Y, Hikosaka M, Sakdapipanich JT, et al. Crystal nucleation and growth of natural rubber purified by deprotenization and trans-esterification. Polym J. 2004;36:361–7.

    Article  CAS  Google Scholar 

  7. Armistead K, Goldbeck-Wood G, Keller A. Polymer crystallization theories. Adv Polym Sci. 1992;100:221–312.

    Google Scholar 

  8. Mandelkern L. The role of elastomers in the study of polymer crystallization. Rubber Chem Technol. 1993;66:G61–75.

    Article  Google Scholar 

  9. Trabelsi S, Albouy P, Rault J. Crystallization and melting processes in vulcanized stretched natural rubber. Macromolecules. 2003;36:7624–39.

    Article  CAS  Google Scholar 

  10. Miyamoto Y, Yamao H, Sekimoto K. Crystallization and melting of polyisoprene rubber under uniaxial deformation. Macromolecules. 2003;36:6462–71.

    Article  CAS  Google Scholar 

  11. Valladares D, Yalcin B, Cakmak M. Long time evolution of structural hierarchy in uniaxially stretched and retracted cross-linked natural rubber. Macromolecules. 2005;38:9229–42.

    Article  CAS  Google Scholar 

  12. Candau N, Laghmach R, Laurent C, Chenal J, Gauthier C, Biben T, et al. Strain-induced crystallization of natural rubber and cross-link densities heterogeneities. Macromolecules. 2014;47:5815–24.

    Article  CAS  Google Scholar 

  13. Katzenberg F, Heuwers B, Tiller JC. Superheated rubber for cold storage. Adv Mater. 2011;23:1909–11.

    Article  CAS  Google Scholar 

  14. Tosaka M, Shigeki E. Triaxially oriented shape memory natural rubber. Polymer. 2018;157:151–5.

    Article  CAS  Google Scholar 

  15. Klinklai W, Saito T, Kawahara S, Tashiro K, Suzuki Y, Sakdapipanich JT, et al. Hyperdeproteinized natural rubber prepared with urea. J Appl Polym Sci. 2004;93:555–9.

    Article  CAS  Google Scholar 

  16. Stroble G. The physics of polymers. Berlin Heidelberg: Springer; 1996.

    Book  Google Scholar 

  17. Kawahara S, Kakubo T, Sakdapipanich JT, Isono Y, Tanaka Y. Characterization of fatty acids linked to natural rubber—role of linked fatty acids on crystallization of the rubber. Polymer. 2000;41:7483–8.

    Article  CAS  Google Scholar 

  18. Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Nat Bur Stand. 1962;66A:13–28.

    Article  CAS  Google Scholar 

  19. Luch D, Yeh GY. Morpology of strain-induced crystallization of natural rubber.I. Electron microscopy on uncrosslinked thin film. J Appl Phys. 1972;43:4326–38.

    Article  CAS  Google Scholar 

  20. Kim H, Mandelkern L. Multiple melting transition in natural rubber. J Polym Sci A-2. 1972;10:1125–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (C) (16K05913) from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Tosaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosaka, M., Kumagawa, D. Reexamination of the equilibrium melting temperature of natural rubber crystals. Polym J 52, 255–259 (2020). https://doi.org/10.1038/s41428-019-0253-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0253-9

Search

Quick links