Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutrophil–macrophage communication via extracellular vesicle transfer promotes itaconate accumulation and ameliorates cytokine storm syndrome

Abstract

Cytokine storm syndrome (CSS) is a life-threatening systemic inflammatory syndrome involving innate immune hyperactivity triggered by various therapies, infections, and autoimmune conditions. However, the potential interplay between innate immune cells is not fully understood. Here, using poly I:C and lipopolysaccharide (LPS)-induced cytokine storm models, a protective role of neutrophils through the modulation of macrophage activation was identified in a CSS model. Intravital imaging revealed neutrophil-derived extracellular vesicles (NDEVs) in the liver and spleen, which were captured by macrophages. NDEVs suppressed proinflammatory cytokine production by macrophages when cocultured in vitro or infused into CSS models. Metabolic profiling of macrophages treated with NDEV revealed elevated levels of the anti-inflammatory metabolite, itaconate, which is produced from cis-aconitate in the Krebs cycle by cis-aconitate decarboxylase (Acod1, encoded by Irg1). Irg1 in macrophages, but not in neutrophils, was critical for the NDEV-mediated anti-inflammatory effects. Mechanistically, NDEVs delivered miR-27a-3p, which suppressed the expression of Suclg1, the gene encoding the enzyme that metabolizes itaconate, thereby resulting in the accumulation of itaconate in macrophages. These findings demonstrated that neutrophil-to-macrophage communication mediated by extracellular vesicles is critical for promoting the anti-inflammatory reprogramming of macrophages in CSS and may have potential implications for the treatment of this fatal condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383:2255–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ryan DG, O’Neill LAJ. Krebs cycle reborn in macrophage immunometabolism. Annu Rev Immunol. 2020;38:289–313.

    Article  CAS  PubMed  Google Scholar 

  3. Maassen S, Coenen B, Ioannidis M, Harber K, Grijpstra P, Van den Bossche J, et al. Itaconate promotes a wound resolving phenotype in pro-inflammatory macrophages. Redox Biol. 2023;59:102591.

    Article  CAS  PubMed  Google Scholar 

  4. McKenna E, Wubben R, Isaza-Correa JM, Melo AM, Mhaonaigh AU, Conlon N, et al. Neutrophils in COVID-19: Not Innocent Bystanders. Front Immunol. 2022;13:864387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laforge M, Elbim C, Frere C, Hemadi M, Massaad C, Nuss P, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20:515–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cahilog Z, Zhao H, Wu L, Alam A, Eguchi S, Weng H, et al. The Role of Neutrophil NETosis in Organ Injury: Novel Inflammatory Cell Death Mechanisms. Inflammation. 2020;43:2021–32.

    Article  PubMed  Google Scholar 

  7. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371:531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al. Synergism of TNF-alpha and IFN-gamma Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184:149–168.e17.

    Article  CAS  PubMed  Google Scholar 

  9. Wang A, Pope SD, Weinstein JS, Yu S, Zhang C, Booth CJ, et al. Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice. Proc Natl Acad Sci USA. 2019;116:2200–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bonaventura A, Vecchie A, Dagna L, Martinod K, Dixon DL, Van Tassell BW, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21:319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2:216–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol. 2010;10:427–39.

    Article  CAS  PubMed  Google Scholar 

  13. Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, et al. Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels. J Biol Chem. 2016;291:14274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liao ST, Han C, Xu DQ, Fu XW, Wang JS, Kong LY. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun. 2019;10:5091.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018;556:113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, et al. Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature. 2018;556:501–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen LL, Morcelle C, Cheng ZL, Chen X, Xu Y, Gao Y, et al. Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nat Cell Biol. 2022;24:353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Swain A, Bambouskova M, Kim H, Andhey PS, Duncan D, Auclair K, et al. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nat Metab. 2020;2:594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature. 2004;430:218–22.

    Article  CAS  PubMed  Google Scholar 

  20. Qin W, Qin K, Zhang Y, Jia W, Chen Y, Cheng B, et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat Chem Biol. 2019;15:983–91.

    Article  CAS  PubMed  Google Scholar 

  21. Tomlinson KL, Riquelme SA, Baskota SU, Drikic M, Monk IR, Stinear TP, et al. Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Rep. 2023;42:112064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao H, Teng D, Yang L, Xu X, Chen J, Jiang T, et al. Myeloid-derived itaconate suppresses cytotoxic CD8(+) T cells and promotes tumour growth. Nat Metab. 2022;4:1660–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun P, Zhang Z, Wang B, Liu C, Chen C, Liu P, et al. A genetically encoded fluorescent biosensor for detecting itaconate with subcellular resolution in living macrophages. Nat Commun. 2022;13:6562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gu X, Jin B, Qi Z, Yin X. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis. Sci Rep. 2021;11:13560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gilicze AB, Wiener Z, Toth S, Buzas E, Pallinger E, Falcone FH, et al. Myeloid-derived microRNAs, miR-223, miR27a, and miR-652, are dominant players in myeloid regulation. Biomed Res Int. 2014;2014:870267.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Feng J, Iwama A, Satake M, Kohu K. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1. Br J Haematol. 2009;145:412–23.

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C, Kubes P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science. 2017;358:111–6.

    Article  CAS  PubMed  Google Scholar 

  28. Lindborg JA, Mack M, Zigmond RE. Neutrophils are critical for myelin removal in a peripheral nerve injury model of Wallerian degeneration. J Neurosci. 2017;37:10258–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reber LL, Gillis CM, Starkl P, Jonsson F, Sibilano R, Marichal T, et al. Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. J Exp Med. 2017;214:1249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dalli J, Serhan CN. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood. 2012;120:e60–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eken C, Sadallah S, Martin PJ, Treves S, Schifferli JA. Ectosomes of polymorphonuclear neutrophils activate multiple signaling pathways in macrophages. Immunobiology. 2013;218:382–92.

    Article  CAS  PubMed  Google Scholar 

  32. Peace CG, O’neill LA. The role of itaconate in host defense and inflammation. J Clin Investig. 2022;132:e140508.

    Article  Google Scholar 

  33. Cheng Y, Kuang W, Hao Y, Zhang D, Lei M, Du L, et al. Downregulation of miR-27a* and miR-532-5p and upregulation of miR-146a and miR-155 in LPS-induced RAW264.7 macrophage cells. Inflammation. 2012;35:1308–13.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Zhang X, Tian J, Liu G, Li X, Shen D. Sevoflurane alleviates LPS-induced acute lung injury via the microRNA-27a-3p/TLR4/MyD88/NF-kappaB signaling pathway. Int J Mol Med. 2019;44:479–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ju M, Liu B, He H, Gu Z, Liu Y, Su Y, et al. MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting in fl ammation and apoptosis through modulating TLR4/MyD88/NF-kappaB pathway. Cell Cycle. 2018;17:2001–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lv X, Zhang XY, Zhang Q, Nie YJ, Luo GH, Fan X, et al. lncRNA NEAT1 aggravates sepsis-induced lung injury by regulating the miR-27a/PTEN axis. Lab Invest. 2021;101:1371–81.

    Article  CAS  PubMed  Google Scholar 

  37. Cron RQ, Goyal G, Chatham WW. Cytokine storm syndrome. Annu Rev Med. 2023;74:321–37.

    Article  CAS  PubMed  Google Scholar 

  38. Schuster EM, Epple MW, Glaser KM, Mihlan M, Lucht K, Zimmermann JA, et al. TFEB induces mitochondrial itaconate synthesis to suppress bacterial growth in macrophages. Nat Metab. 2022;4:856–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aparicio-Vergara M, Tencerova M, Morgantini C, Barreby E, Aouadi M. Isolation of Kupffer Cells and Hepatocytes from a Single Mouse Liver. Methods Mol Biol. 2017;1639:161–71.

    Article  CAS  PubMed  Google Scholar 

  40. Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CH, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Ministry of Science and Technology of China (2020YFC2002800 to Jing Wang) and the National Natural Science Foundation of China (82371760 to Jing Wang and 82272181 to Yan Luo). We extend our gratitude to the Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, for their assistance with the quantification of itaconate in this work.

Author information

Authors and Affiliations

Authors

Contributions

H-XK performed most of the experiments, analyzed the data, and interpreted the data. TL contributed to the in vitro assay. Y-YW and W-JB provided technique support. JW and YL designed and supervised the study. H-XK and JW wrote the manuscript.

Corresponding authors

Correspondence to Yan Luo or Jing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Liu, T., Wang, Y. et al. Neutrophil–macrophage communication via extracellular vesicle transfer promotes itaconate accumulation and ameliorates cytokine storm syndrome. Cell Mol Immunol (2024). https://doi.org/10.1038/s41423-024-01174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41423-024-01174-6

Keywords

Search

Quick links