Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dhx33 promotes B-cell growth and proliferation by controlling activation-induced rRNA upregulation

Abstract

Upon recognition of foreign antigens, naïve B cells undergo rapid activation, growth, and proliferation. How B-cell growth and proliferation are coupled with activation remains poorly understood. Combining CRISPR/Cas9-mediated functional analysis and mouse genetics approaches, we found that Dhx33, an activation-induced RNA helicase, plays a critical role in coupling B-cell activation with growth and proliferation. Mutant mice with B-cell-specific deletion of Dhx33 exhibited impaired B-cell development, germinal center reactions, plasma cell differentiation, and antibody production. Dhx33-deficient B cells appeared normal in the steady state and early stage of activation but were retarded in growth and proliferation. Mechanistically, Dhx33 played an indispensable role in activation-induced upregulation of ribosomal DNA (rDNA) transcription. In the absence of Dhx33, activated B cells were compromised in their ability to ramp up 47S ribosomal RNA (rRNA) production and ribosome biogenesis, resulting in nucleolar stress, p53 accumulation, and cellular death. Our findings demonstrate an essential role for Dhx33 in coupling B-cell activation with growth and proliferation and suggest that Dhx33 inhibition is a potential therapy for lymphoma and antibody-mediated autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The RNA-seq data generated in this study have been deposited in the NCBI Sequence Read Archive (SRA) under accession number PRJNA850669.

References

  1. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381:751–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kouzine F, Wojtowicz D, Yamane A, Resch W, Kieffer-Kwon K-R, Bandle R, et al. Global regulation of promoter melting in naive lymphocytes. Cell. 2013;153:988–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolf T, Jin W, Zoppi G, Vogel IA, Akhmedov M, Bleck CKE, et al. Dynamics in protein translation sustaining T cell preparedness. Nat Immunol. 2020;21:927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burnet FM. A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J Clin. 1976;26:119–21.

    Article  CAS  PubMed  Google Scholar 

  5. Russell J, Zomerdijk JC. RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem Sci. 2005;30:87–96.

    Article  CAS  PubMed  Google Scholar 

  6. Bourgeois CF, Mortreux F, Auboeuf D. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Bio. 2016;17:426–38.

    Article  CAS  Google Scholar 

  7. Takuya N, Kei H, Tatsuya M, Moeko M, Sho M, Ikuo S, et al. In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nat Commun. 2011;2:465.

    Article  Google Scholar 

  8. Hobeika E, Thiemann S, Storch B, Jumaa H, Nielsen PJ, Pelanda R, et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc Natl Acad Sci USA. 2006;103:13789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmidt-Supprian M, Rajewsky K. Vagaries of conditional gene targeting. Nat Immunol. 2007;8:665–8.

    Article  CAS  PubMed  Google Scholar 

  10. Timm W, Jane S, Wiebke W, Tristan W, Van TC, Klaus R, et al. A novel allele for inducible Cre expression in germinal center B cells. Eur J Immunol. 2019;49:192–4.

    Article  Google Scholar 

  11. Zhang Y, Forys JT, Miceli AP. Identification of DHX33 as a mediator of rRNA synthesis and cell growth. Mol Cell Biol. 2011;31:4676–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Lu H. Signaling to p53: Ribosomal proteins find their way. Cancer Cell. 2009;16:369–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Su D, Yuan B, Su C, Zhang Y. A 54-kDa short variant of DHX33 functions in regulating mRNA translation. J Cell Physiol. 2019;234:15308–19.

    Article  CAS  PubMed  Google Scholar 

  14. Kaya-Okur HS, Steven JW, Christine AC, Erica SP, Terri DB, Jorja GH, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019;10:1930.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kumari P, Tarighi S, Braun T, Ianni A. SIRT7 acts as a guardian of cellular integrity by controlling nucleolar and extra-nucleolar functions. Genes (Basel). 2021;12:1361.

    Article  CAS  PubMed  Google Scholar 

  16. Langst G, Becker PB, Grummt I. TTF-I determines the chromatin architecture of the active rDNA promoter. EMBO J. 1998;17:3135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grummt I, Langst G. Epigenetic control of RNA polymerase I transcription in mammalian cells. Bba-Gene Regul Mech. 1829;393-404:2013.

    Google Scholar 

  18. Stefanovsky V, Langlois F, Gagnon-Kugler T, Rothblum LI, Moss T. Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling. Mol Cell. 2006;21:629–39.

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Ge W, Zhang Y. Recombinant DHX33 protein possesses dual DNA/RNA helicase activity. Biochemistry. 2019;58:250–8.

    Article  CAS  PubMed  Google Scholar 

  20. Drygin D, Rice WG, Grummt I. The RNA polymerase I transcription machinery: An emerging target for the treatment of cancer. Annu Rev Pharm Toxicol. 2010;50:131–56.

    Article  CAS  Google Scholar 

  21. Bursac S, Prodan Y, Pullen N, Bartek J, Volarevic S. Dysregulated ribosome biogenesis reveals therapeutic liabilities in Cancer. Trends Cancer. 2021;7:57–76.

    Article  CAS  PubMed  Google Scholar 

  22. Fu J, Liu Y, Wang X, Yuan B, Zhang Y. Role of DHX33 in c-Myc-induced cancers. Carcinogenesis. 2017;38:649–60.

    Article  CAS  PubMed  Google Scholar 

  23. Wang H, Yu J, Wang X, Zhang Y. The RNA helicase DHX33 is required for cancer cell proliferation in human glioblastoma and confers resistance to PI3K/mTOR inhibition. Cell Signal. 2019;54:170–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tian Q-H, Zhang M-F, Luo R-G, Fu J, He C, Hu G. et al. DHX33 expression is increased in hepatocellular carcinoma and indicates poor prognosis. Biochem Bioph Res Co. 2016;473:1163–9.

    Article  CAS  Google Scholar 

  25. Zhu Y, Du Y, Zhang Y. DHX33 promotes colon cancer development downstream of Wnt signaling. Gene. 2020;735:144402.

    Article  CAS  PubMed  Google Scholar 

  26. Poortinga G, Katherine MH, Hayley S, Carl RW, Anna J, Kerith S, et al. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J. 2004;23:3325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Weimin F, Cheng P, Shiyun C, Hongbin J, Hanbing Z, et al. Targeting RNA helicase DHX33 blocks Ras-driven lung tumorigenesis in vivo. Cancer Sci. 2020;111:3564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Feng W, Yuan Z, Weber JD, Zhang Y. DHX33 Interacts with AP-2beta to regulate Bcl-2 gene expression and promote cancer cell survival. Mol Cell Biol. 2019;39:e00017-19.

  29. Zhang Y, Saporita AJ, Weber JD. P19ARF and RasV(1)(2) offer opposing regulation of DHX33 translation to dictate tumor cell fate. Mol Cell Biol. 2013;33:1594–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 2013;5:237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bursac S, Maja CB, Martin P, Ines O, Lior G, Yan Z, et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc Natl Acad Sci USA. 2012;109:20467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 2013;4:87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13:83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006;127:1323–34.

    Article  CAS  PubMed  Google Scholar 

  35. Ventura A, David GK, Margaret EM, David AT, Jan G, Laura L, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445:661–5.

    Article  CAS  PubMed  Google Scholar 

  36. Xue W, Lars Z, Cornelius M, Ross AD, Eva H, Valery K, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445:656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Platt RJ, Sidi C, Yang Z, Michael JY, Lukasz S, Hannah RK, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rickert RC, Roes J, Rajewsky K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 1997;25:1317–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Casola S, Giorgio C, Nathalie U, Sergei BK, Jane S, Zhenyue H, et al. Tracking germinal center B cells expressing germ-line immunoglobulin gamma1 transcripts by conditional gene targeting. Proc Natl Acad Sci USA. 2006;103:7396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seung GK, Wen-H L, Peiwen L, Hyun YJ, Hyung WL, Jovan S. MicroRNAs of the miR-17~92 family are critical regulators of TFH differentiation. Nat Immunol. 2013;14:849–57.

    Article  Google Scholar 

  41. Yuki H, Takao K, Hiroyuki K, Changshan W, Atsushi I, Keiji K. Downregulation of rRNA transcription triggers cell differentiation. PLoS One. 2014;9:e98586.

    Article  Google Scholar 

  42. Subramanian A, Aravind S, Pablo T, Vamsi KM, Sayan M, Benjamin LE, Michael AG, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hyun YJ, Hiroyo O, Pengda C, Chao Y, Xiaojuan Z, Seung GK, et al. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. Plos Genet. 2017;13:e1006623.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all members of the CX, W-HL, and Kairui Mao labs (Xiamen University) for technical assistance. This study was supported by the National Natural Science Foundation of China (31570882, 31770950 and 32070877 to W.-H. L, and 81961138008 to CX), the Fundamental Research Funds for the Central Universities of China-Xiamen University (20720170064 to CX), and the Sanofi Institute for Biomedical Research (SIBR).

Author information

Authors and Affiliations

Authors

Contributions

CX, HYJ, and PC conceived this project. XH and JZ designed and performed most of the experiments, analyzed data, and generated figures; AA and PH performed some experiments and provided technical assistance; XL performed RNA sequencing analysis; PC, JX, YD, YL, and LL contributed to the experiments; CX and W-HL supervised the project. XH, JZ, W-HL, and CX wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Wen-Hsien Liu or Changchun Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhao, J., Adilijiang, A. et al. Dhx33 promotes B-cell growth and proliferation by controlling activation-induced rRNA upregulation. Cell Mol Immunol 20, 277–291 (2023). https://doi.org/10.1038/s41423-022-00972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00972-0

Keywords

Search

Quick links