Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis

Abstract

While many drugs are effective at reducing the relapse frequency of multiple sclerosis (MS), there is an unmet need for treatments that slow neurodegeneration resulting from secondary disease progression. The mechanism of neurodegeneration in MS has not yet been established. Here, we discovered a potential pathogenetic role of ferroptosis, an iron-dependent regulated cell death mechanism, in MS. We found that critical ferroptosis proteins (acyl-CoA synthetase long-chain family member 4, ACSL4) were altered in an existing genomic database of MS patients, and biochemical features of ferroptosis, including lipid reactive oxygen species (ROS) accumulation and mitochondrial shrinkage, were observed in the experimental autoimmune encephalitis (EAE) mouse model. Targeting ferroptosis with ferroptosis inhibitors or reducing ACSL4 expression improved the behavioral phenotypes of EAE mice, reduced neuroinflammation, and prevented neuronal death. We found that ferroptosis was an early event in EAE, which may promote T-cell activation through T-cell receptor (TCR) signaling in vitro and in vivo. These data indicate that ferroptosis may be a potential target for treating MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data supporting this study are available from the corresponding authors upon request.

References

  1. Kuhlmann T, Ludwin S, Prat A, Antel J, Bruck W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017;133:13–24. https://doi.org/10.1007/s00401-016-1653-y.

    Article  CAS  PubMed  Google Scholar 

  2. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–36. https://doi.org/10.1016/S0140-6736(18)30481-1.

    Article  PubMed  Google Scholar 

  3. Maugh TH 2nd. The EAE model: a tentative connection to multiple sclerosis. Science. 1977;195:969–71. https://doi.org/10.1126/science.195.4282.969.

    Article  PubMed  Google Scholar 

  4. Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164:1079–106. https://doi.org/10.1111/j.1476-5381.2011.01302.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hare D, Ayton S, Bush A, Lei P. A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci. 2013;5:34. https://doi.org/10.3389/fnagi.2013.00034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stephenson E, Nathoo N, Mahjoub Y, Dunn JF, Yong VW. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol. 2014;10:459–68. https://doi.org/10.1038/nrneurol.2014.118.

    Article  CAS  PubMed  Google Scholar 

  7. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Brück W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74:848–61. https://doi.org/10.1002/ana.23974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57:467–78. https://doi.org/10.1002/glia.20784.

    Article  PubMed  Google Scholar 

  9. Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genom. 2009;2:2. https://doi.org/10.1186/1755-8794-2-2.

    Article  CAS  Google Scholar 

  10. Wang Z, Yin W, Zhu L, Li J, Yao Y, Chen F, et al. Iron drives T helper cell pathogenicity by promoting RNA-binding protein PCBP1-mediated proinflammatory cytokine production. Immunity. 2018;49:80–92.e7. https://doi.org/10.1016/j.immuni.2018.05.008.

    Article  CAS  PubMed  Google Scholar 

  11. Pedchenko TV, LeVine SM. Desferrioxamine suppresses experimental allergic encephalomyelitis induced by MBP in SJL mice. J Neuroimmunol. 1998;84:188–97. https://doi.org/10.1016/s0165-5728(97)00256-7.

    Article  CAS  PubMed  Google Scholar 

  12. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6:49. https://doi.org/10.1038/s41392-020-00428-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 2021;42:259–305. https://doi.org/10.1002/med.21817.

    Article  PubMed  Google Scholar 

  15. Yan HF, Tuo QZ, Yin QZ, Lei P. The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zool Res. 2020;41:220–30. https://doi.org/10.24272/j.issn.2095-8137.2020.042.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lei P, Ayton S, Bush AI. The essential elements of Alzheimer’s disease. J Biol Chem. 2021;296:100105. https://doi.org/10.1074/jbc.REV120.008207.

    Article  CAS  PubMed  Google Scholar 

  17. Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4. https://doi.org/10.1038/s41586-019-1170-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33:1001–12.e5. https://doi.org/10.1016/j.cmet.2021.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Nino MD, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 2017;28:218–29. https://doi.org/10.1681/ASN.2015121376.

    Article  CAS  PubMed  Google Scholar 

  20. Hendrickx D, van Scheppingen J, van der Poel M, Bossers K, Schuurman KG, van Eden CG, et al. Gene expression profiling of multiple sclerosis pathology identifies early patterns of demyelination surrounding chronic active lesions. Front Immunol. 2017;8:1810. https://doi.org/10.3389/fimmu.2017.01810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han MH, Lundgren DH, Jaiswal S, Chao M, Graham KL, Garris CS, et al. Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice. J Exp Med. 2012;209:1325–34. https://doi.org/10.1084/jem.20101974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tuo QZ, Liu Y, Xiang Z, Yan HF, Zou T, Shu Y, et al. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther. 2022;7:59. https://doi.org/10.1038/s41392-022-00917-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grant JL, Ghosn EE, Axtell RC, Herges K, Kuipers HF, Woodling NS, et al. Reversal of paralysis and reduced inflammation from peripheral administration of beta-amyloid in TH1 and TH17 versions of experimental autoimmune encephalomyelitis. Sci Transl Med. 2012;4:145ra105. https://doi.org/10.1126/scitranslmed.3004145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM. Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med. 2008;14:337–42. https://doi.org/10.1038/nm1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ayton S, Lei P, Duce JA, Wong BX, Sedjahtera A, Adlard PA, et al. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann Neurol. 2013;73:554–9. https://doi.org/10.1002/ana.23817.

    Article  CAS  PubMed  Google Scholar 

  26. Reiley WW, Jin W, Lee AJ, Wright A, Wu X, Tewalt EF, et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J Exp Med. 2007;204:1475–85. https://doi.org/10.1084/jem.20062694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou R, Leng T, Yang T, Chen F, Hu W, Xiong ZG. β-Estradiol protects against acidosis-mediated and ischemic neuronal injury by promoting ASIC1a (Acid-Sensing Ion Channel 1a) protein degradation. Stroke. 2019;50:2902–11. https://doi.org/10.1161/STROKEAHA.119.025940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zarruk JG, Berard JL, Passos dos Santos R, Kroner A, Lee J, Arosio P, et al. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Neurobiol Dis. 2015;81:93–107. https://doi.org/10.1016/j.nbd.2015.02.001.

    Article  CAS  PubMed  Google Scholar 

  29. Lee NJ, Ha SK, Sati P, Absinta M, Nair G, Luciano NJ, et al. Potential role of iron in repair of inflammatory demyelinating lesions. J Clin Investig. 2019;129:4365–76. https://doi.org/10.1172/JCI126809.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Russ DE, Cross RBP, Li L, Koch SC, Matson KJE, Yadav A, et al. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat Commun. 2021;12:5722. https://doi.org/10.1038/s41467-021-25125-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berard JL, Wolak K, Fournier S, David S. Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia. 2010;58:434–45. https://doi.org/10.1002/glia.20935.

    Article  PubMed  Google Scholar 

  32. Caravagna C, Jaouën A, Desplat-Jégo S, Fenrich KK, Bergot E, Luche H, et al. Diversity of innate immune cell subsets across spatial and temporal scales in an EAE mouse model. Sci Rep. 2018;8:5146. https://doi.org/10.1038/s41598-018-22872-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saligrama N, Zhao F, Sikora MJ, Serratelli WS, Fernandes RA, Louis DM, et al. Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature. 2019;572:481–7. https://doi.org/10.1038/s41586-019-1467-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao Y, Jin J, Chang M, Chang JH, Hu H, Zhou X, et al. Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med. 2013;19:595–602. https://doi.org/10.1038/nm.3111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pena-Toledo MA, Luque E, Ruz-Caracuel I, Aguera E, Jimena I, Pena-Amaro J, et al. Transcranial magnetic stimulation improves muscle involvement in experimental autoimmune encephalomyelitis. Int J Mol Sci. 2021;22:8589. https://doi.org/10.3390/ijms22168589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bannerman PG, Hahn A, Ramirez S, Morley M, Bonnemann C, Yu S, et al. Motor neuron pathology in experimental autoimmune encephalomyelitis: studies in THY1-YFP transgenic mice. Brain. 2005;128:1877–86. https://doi.org/10.1093/brain/awh550.

    Article  CAS  PubMed  Google Scholar 

  37. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85. https://doi.org/10.1016/j.cell.2017.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shang Y, Luo M, Yao F, Wang S, Yuan Z, Yang Y. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell Signal. 2020;72:109633. https://doi.org/10.1016/j.cellsig.2020.109633.

    Article  CAS  PubMed  Google Scholar 

  39. Ayton S, Lei P, Adlard PA, Volitakis I, Cherny RA, Bush AI, et al. Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease. Mol Neurodegener. 2014;9:27. https://doi.org/10.1186/1750-1326-9-27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tuo Q, Lei P, Jackman KA, Li X, Xiong H, Li X, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 2017;22:1520–30. https://doi.org/10.1038/mp.2017.171.

    Article  CAS  PubMed  Google Scholar 

  41. Fischer MT, Wimmer I, Hoftberger R, Gerlach S, Haider L, Zrzavy T, et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013;136:1799–815. https://doi.org/10.1093/brain/awt110.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morales Pantoja IE, Hu CL, Perrone-Bizzozero NI, Zheng J, Bizzozero OA. Nrf2-dysregulation correlates with reduced synthesis and low glutathione levels in experimental autoimmune encephalomyelitis. J Neurochem. 2016;139:640–50. https://doi.org/10.1111/jnc.13837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pampliega O, Domercq M, Soria FN, Villoslada P, Rodríguez-Antigüedad A, Matute C. Increased expression of cystine/glutamate antiporter in multiple sclerosis. J Neuroinflammation. 2011;8:63. https://doi.org/10.1186/1742-2094-8-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Merckx E, Albertini G, Paterka M, Jensen C, Albrecht P, Dietrich M, et al. Absence of system xc(-) on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J Neuroinflamm. 2017;14:9. https://doi.org/10.1186/s12974-016-0787-0.

    Article  CAS  Google Scholar 

  45. Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;40:365–78.e6. https://doi.org/10.1016/j.ccell.2022.02.003.

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26:2284–99. https://doi.org/10.1038/s41418-019-0299-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He S, Li R, Peng Y, Wang Z, Huang J, Meng H, et al. ACSL4 contributes to ferroptosis-mediated rhabdomyolysis in exertional heat stroke. J Cachexia Sarcopenia Muscle. 2022;7:40. https://doi.org/10.1002/jcsm.12953.

    Article  Google Scholar 

  48. Huang D, Han Y, Rani MR, Glabinski A, Trebst C, Sørensen T, et al. Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol Rev. 2000;177:52–67. https://doi.org/10.1034/j.1600-065x.2000.17709.x.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang J, Xu X, Liu H, Jin L, Shen X, Xie C, et al. Astrocytic YAP prevents the demyelination through promoting expression of cholesterol synthesis genes in experimental autoimmune encephalomyelitis. Cell Death Dis. 2021;12:907. https://doi.org/10.1038/s41419-021-04203-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sideris DP, Petrakis N, Katrakili N, Mikropoulou D, Gallo A, Ciofi-Baffoni S, et al. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci. 2002;22:6578–86.

    Article  Google Scholar 

  51. Gresle MM, Schulz K, Jonas A, Perreau VM, Cipriani T, Baxter AG, et al. Ceruloplasmin gene-deficient mice with experimental autoimmune encephalomyelitis show attenuated early disease evolution. J Neurosci Res. 2014;92:732–42. https://doi.org/10.1002/jnr.23349.

    Article  CAS  PubMed  Google Scholar 

  52. Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med. 2015;212:555–68. https://doi.org/10.1084/jem.20140857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu H, Wang H, Xiao Y, Jin J, Chang JH, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399–414. https://doi.org/10.1084/jem.20151426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Snook JP, Kim C, Williams MA. TCR signal strength controls the differentiation of CD4(+) effector and memory T cells. Sci Immunol. 2018;3. https://doi.org/10.1126/sciimmunol.aas9103.

  55. Gonzalez-Navajas JM, Fine S, Law J, Datta SK, Nguyen KP, Yu M, et al. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice. J Clin Investig. 2010;120:570–81. https://doi.org/10.1172/JCI40055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bertin S, Lozano-Ruiz B, Bachiller V, Garcia-Martinez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505–15. https://doi.org/10.1038/mi.2014.84.

    Article  CAS  PubMed  Google Scholar 

  57. Klebanoff CA, Crompton JG, Leonardi AJ, Yamamoto TN, Chandran SS, Eil RL, et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight. 2017;2:348. https://doi.org/10.1172/jci.insight.95103.

    Article  Google Scholar 

  58. Wartewig T, Ruland J. PD-1 tumor suppressor signaling in T cell lymphomas. Trends Immunol. 2019;40:403–14. https://doi.org/10.1016/j.it.2019.03.005.

    Article  CAS  PubMed  Google Scholar 

  59. Yatim N, Cullen S, Albert ML. Dying cells actively regulate adaptive immune responses. Nat Rev Immunol. 2017;17:262–75. https://doi.org/10.1038/nri.2017.9.

    Article  CAS  PubMed  Google Scholar 

  60. Bhat R, Steinman L. Innate and adaptive autoimmunity directed to the central nervous system. Neuron. 2009;64:123–32. https://doi.org/10.1016/j.neuron.2009.09.015.

    Article  CAS  PubMed  Google Scholar 

  61. Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 2020;8:e001369. https://doi.org/10.1136/jitc-2020-001369.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wagner CA, Roque PJ, Mileur TR, Liggitt D, Goverman JM. Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. J Clin Investig. 2020;130:203–13. https://doi.org/10.1172/JCI132531.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project of China (2019YFA0110201), the National Natural Science Foundation of China (82071191, 81801182, 82025002, 32000724, 81871232), and the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University (2020YJC01, Z2021LC001).

Author information

Authors and Affiliations

Authors

Contributions

Contribution: PL and HH conceived and raised funds for the study. PL supervised the overall project. JY-LQ performed the in vivo studies with supervision from PL and Q-zT. X-lD, W-yY, LL, and P-bG performed the in vitro studies with supervision from HZ and HH. X-lD analyzed the RNA-seq data with supervision from PL. ZX and Z-yZ prepared the AAV-related experiments with supervision from BD. JY-LQ, PL and HH integrated the data and wrote the drafts of the paper. All authors edited the paper.

Corresponding authors

Correspondence to Hongbo Hu or Peng Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luoqian, J., Yang, W., Ding, X. et al. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell Mol Immunol 19, 913–924 (2022). https://doi.org/10.1038/s41423-022-00883-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00883-0

Keywords

This article is cited by

Search

Quick links