Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Exploring innate immunity in cancer immunotherapy: opportunities and challenges

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  Google Scholar 

  2. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  Google Scholar 

  3. Li, X., Song, W., Shao, C., Shi, Y. & Han, W. Emerging predictors of the response to the blockade of immune checkpoints in cancer therapy. Cell Mol. Immunol. 16, 28–39 (2019).

    Article  CAS  Google Scholar 

  4. Wei, J. et al. Clinical development of CAR T cell therapy in China: 2020 update. Cell Mol. Immunol. 18, 792–804 (2021).

    Article  CAS  Google Scholar 

  5. Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019).

    Article  CAS  Google Scholar 

  6. Lv, M. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 30, 966–979 (2020).

    Article  CAS  Google Scholar 

  7. Woo, S. R., Corrales, L. & Gajewski, T. F. Innate immune recognition of cancer. Annu Rev. Immunol. 33, 445–474 (2015).

    Article  CAS  Google Scholar 

  8. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  Google Scholar 

  9. Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article  CAS  Google Scholar 

  10. Fang, F., Xiao, W. & Tian, Z. NK cell-based immunotherapy for cancer. Semin Immunol. 31, 37–54 (2017).

    Article  CAS  Google Scholar 

  11. Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    Article  Google Scholar 

  12. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  CAS  Google Scholar 

  13. Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 199, 397–402 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the National Natural Science Foundation of China (Nos. 31991171, 81830002, and 31870873 to W.D.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Wang or Weidong Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Dai, H., Wang, H. et al. Exploring innate immunity in cancer immunotherapy: opportunities and challenges. Cell Mol Immunol 18, 1607–1609 (2021). https://doi.org/10.1038/s41423-021-00679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-021-00679-8

This article is cited by

Search

Quick links