Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PD-1 blockade-unresponsive human tumor-infiltrating CD8+ T cells are marked by loss of CD28 expression and rescued by IL-15

Abstract

Blockade of programmed death-1 (PD-1) reinvigorates exhausted CD8+ T cells, resulting in tumor regression in cancer patients. Recently, reinvigoration of exhausted CD8+ T cells following PD-1 blockade was shown to be CD28-dependent in mouse models. Herein, we examined the role of CD28 in anti-PD-1 antibody-induced human T cell reinvigoration using tumor-infiltrating CD8+ T cells (CD8+ TILs) obtained from non-small-cell lung cancer patients. Single-cell analysis demonstrated a distinct expression pattern of CD28 between mouse and human CD8+ TILs. Furthermore, we found that human CD28+CD8+ but not CD28CD8+ TILs responded to PD-1 blockade irrespective of B7/CD28 blockade, indicating that CD28 costimulation in human CD8+ TILs is dispensable for PD-1 blockade-induced reinvigoration and that loss of CD28 expression serves as a marker of anti-PD-1 antibody-unresponsive CD8+ TILs. Transcriptionally and phenotypically, PD-1 blockade-unresponsive human CD28PD-1+CD8+ TILs exhibited characteristics of terminally exhausted CD8+ T cells with low TCF1 expression. Notably, CD28PD-1+CD8+ TILs had preserved machinery to respond to IL-15, and IL-15 treatment enhanced the proliferation of CD28PD-1+CD8+ TILs as well as CD28+PD-1+CD8+ TILs. Taken together, these results show that loss of CD28 expression is a marker of PD-1 blockade-unresponsive human CD8+ TILs with a TCF1 signature and provide mechanistic insights into combining IL-15 with anti-PD-1 antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science. 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168, 707–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang, J. et al. Trial watch: the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat. Rev. Drug Discov. 17, 854–855 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 545, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, K. H. et al. The first-week proliferative response of peripheral blood PD-1(+)CD8(+) T cells predicts the response to anti-PD-1 therapy in solid tumors. Clin Cancer Res. 25, 2144–2154 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc. Natl Acad Sci USA. 105, 15016–15021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science. 338, 1220–1225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Utzschneider, D. T. et al. T Cell Factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections. Immunity. 45, 415–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537, 417–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He, R. et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 537, 412–428 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Wu T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci Immunol. 23, eaai8593 (2016).

    Article  Google Scholar 

  13. Siddiqui, I. et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 50, 195–211 (2019). e110.

    Article  CAS  PubMed  Google Scholar 

  14. Miller, B. C. et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 355, 1428–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 355, 1423–1427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 24, 978–985 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell. 175, 1014–1030 (2018). e1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, A. C. et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat Med. 25, 454–461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature. 545, 452–456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med. 24, 994–1004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 169, 1342–1356 (2017). e1316.

    Article  CAS  PubMed  Google Scholar 

  23. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med. 16, 1147–1151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gupta, P. K. et al. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog. 11, e1005177 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Bezman, N. A. et al. Molecular definition of the identity and activation of natural killer cells. Nat Immunol. 13, 1000–1009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Safford, M. et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 6, 472–480 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Fridman, A. L. & Tainsky, M. A. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene. 27, 5975–5987 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Weng, N. P., Akbar, A. N. & Goronzy, J. CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol. 30, 306–312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1(-)CD8(+) tumor-infiltrating T cells. Immunity. 50, 181–194 (2019). e186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchez-Paulete, A. R. et al. Cancer Immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 6, 71–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Snell, L. M. et al. CD8(+) T cell priming in established chronic viral infection preferentially directs differentiation of memory-like cells for sustained immunity. Immunity. 49, 678–694 (2018). e675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity. 51, 840–855 (2019). e845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 175, 998–1013 (2018). e1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 15, 808–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc Natl Acad Sci USA. 107, 9777–9782 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sabatino, M. et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood. 128, 519–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene. 36, 1461–1473 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Ruiz de Galarreta M., et al. beta-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019; https://doi.org/10.1158/2159-8290.CD-19-0074.

  43. Nsengimana, J. et al. beta-Catenin-mediated immune evasion pathway frequently operates in primary cutaneous melanomas. J Clin Investig. 128, 2048–2063 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xue, J. et al. Intrinsic beta-catenin signaling suppresses CD8(+) T-cell infiltration in colorectal cancer. Biomed Pharmacother. 115, 108921 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol. 15, 771–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Waldmann, T. A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 6, 595–601 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J Exp Med. 204, 941–949 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, R. B. et al. IL-15 in tumor microenvironment causes rejection of large established tumors by T cells in a noncognate T cell receptor-dependent manner. Proc Natl Acad Sci USA. 110, 8158–8163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mathios, D. et al. Therapeutic administration of IL-15 superagonist complex ALT-803 leads to long-term survival and durable antitumor immune response in a murine glioblastoma model. Int J Cancer. 138, 187–194 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Conlon K. et al. Abstract CT082: phase (Ph) I/Ib study of NIZ985 with and without spartalizumab (PDR001) in patients (pts) with metastatic/unresectable solid tumors. Cancer Res. 79, CT082 (2019).

    Google Scholar 

  51. Simoni, Y. et al. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun. 9, 2724 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 25, 89–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, H. D. et al. Association between expression level of PD1 by tumor-infiltrating CD8(+) T cells and features of hepatocellular carcinoma. Gastroenterology. 155, 1936–1950 (2018). e1917.

    Article  CAS  PubMed  Google Scholar 

  56. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).

    Article  Google Scholar 

  59. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KHK, HKK, M-JA, and E-CS contributed to the conceptual design of the study. HKK, M-JA, JK, and BMK collected human samples. KHK, HL, and HK processed patients’ samples. KHK and E-CS designed the experiments. KHK, H-DK, CGK, HL, JWH, SJC were involved in data acquisition. KHK, HKK, H-DK, CGK, HL, JWH, SJC, S-HP, M-JA, and E-CS were involved in data analysis and interpretation. KHK performed statistical analysis. KHK, HKK, M-JA, and E-CS drafted the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Myung-Ju Ahn or Eui-Cheol Shin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.H., Kim, H.K., Kim, HD. et al. PD-1 blockade-unresponsive human tumor-infiltrating CD8+ T cells are marked by loss of CD28 expression and rescued by IL-15. Cell Mol Immunol 18, 385–397 (2021). https://doi.org/10.1038/s41423-020-0427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0427-6

Keywords

This article is cited by

Search

Quick links