Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current and novel approaches in yeast cell death research

Abstract

The study of cell death mechanisms in fungi, particularly yeasts, has gained substantial interest in recent decades driven by the potential for biotechnological advancements and therapeutic interventions. Examples include the development of robust yeast strains for industrial fermentations and high-value compound production, novel food preservation strategies against spoilage yeasts, and the identification of targets for treating fungal infections in the clinic. In this review, we discuss a wide range of methods to characterize cellular alterations associated with yeast cell death, noting the advantages and limitations. We describe assays to monitor reversible events versus those that mark a commitment to cell death (point-of-no-return), as these distinctions are important to decipher the underlying regulatory mechanisms. Several well-known challenges remain, including the varied susceptibilities to death within a cell population and the delineation of detailed cell death mechanisms. The identification and characterization of morphologically distinct subsets of dying yeast cells within dynamic yeast populations provides opportunities to reveal novel vulnerabilities and survival mechanisms. Elucidating the intricacies of yeast regulated cell death (yRCD) will contribute to the advancement of scientific knowledge and foster breakthrough discoveries with broad-ranging implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular alterations associated with yeast regulated cell death (yRCD) and methods used for their monitorization.
Fig. 2: Methods to monitor the kinetics of changes in cell viability, plasma membrane integrity and metabolic activity (vitality).
Fig. 3: Proposed methodological strategies for yeast RCD studies.

Similar content being viewed by others

References

  1. Ramsdale M. Programmed cell death in pathogenic fungi. Biochim Biophy Acta Mol Cell Res. 2008;1783:1369–80.

    Article  CAS  Google Scholar 

  2. Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv. 2021;47:107697.

    Article  CAS  PubMed  Google Scholar 

  3. Lomwongsopon P, Varrone C. Contribution of Fermentation Technology to Building Blocks for Renewable Plastics. Fermentation. 2022;8:47.

    Article  CAS  Google Scholar 

  4. Terra-Matos J, Teixeira MO, Santo-Pereira C, Noronha H, Domingues L, Sieiro C, et al. Saccharomyces cerevisiae Cells Lacking the Zinc Vacuolar Transporter Zrt3 Display Improved Ethanol Productivity in Lignocellulosic Hydrolysates. JoF. 2022;8:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ludovico P, Sansonetty F, Silva MT, Côrte-Real M. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS Yeast Res. 2003;3:91–6.

    CAS  PubMed  Google Scholar 

  6. Chaves SR, Rego A, Martins VM, Santos-Pereira C, Sousa MJ, Côrte-Real M. Regulation of Cell Death Induced by Acetic Acid in Yeasts. Front Cell Dev Biol. 2021;9:642375.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Côrte-Real M. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell. 2002;13:2598–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guaragnella N, Passarella S, Marra E, Giannattasio S. Knock-out of metacaspase and/or cytochrome c results in the activation of a ROS-independent acetic acid-induced programmed cell death pathway in yeast. FEBS Lett. 2010;584:3655–60.

    Article  CAS  PubMed  Google Scholar 

  9. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics. Br J Cancer. 1972;26:239–57.

    Article  Google Scholar 

  11. Aouacheria A, Cunningham KW, Hardwick JM, Palková Z, Powers T, Severin FF, et al. Comment on “Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death”. Science. 2018;360:eaar6910.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stolp ZD, Kulkarni M, Liu Y, Zhu C, Jalisi A, Lin S, et al. Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization. Cell Rep. 2022;39:110647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rego A, Ribeiro A, Côrte-Real M, Chaves SR. Monitoring yeast regulated cell death: trespassing the point of no return to loss of plasma membrane integrity. Apoptosis. 2022;27:778–86.

    Article  CAS  PubMed  Google Scholar 

  14. Carmona-Gutiérrez D, Bauer MA, Ring J, Knauer H, Eisenberg T, Büttner S, et al. The propeptide of yeast cathepsin D inhibits programmed necrosis. Cell Death Dis. 2011;2:e161.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jungwirth H, Ring J, Mayer T, Schauer A, Büttner S, Eisenberg T, et al. Loss of peroxisome function triggers necrosis. FEBS Lett. 2008;582:2882–6.

    Article  CAS  PubMed  Google Scholar 

  16. Rockenfeller P, et al. Fatty acids trigger mitochondrion-dependent necrosis. Cell Cycle. 2010;9:2908–14.

    Article  Google Scholar 

  17. Rockenfeller P, Smolnig M, Diessl J, Bashir M, Schmiedhofer V, Knittelfelder O, et al. Diacylglycerol triggers Rim101 pathway–dependent necrosis in yeast: a model for lipotoxicity. Cell Death Differ. 2018;25:767–83.

    Article  CAS  PubMed  Google Scholar 

  18. Santos J, Sousa MJ, Leão C. Ammonium Is Toxic for Aging Yeast Cells, Inducing Death and Shortening of the Chronological Lifespan. PLoS One. 2012;7:e37090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mirisola MG, Braun RJ, Petranovic D. Approaches to study yeast cell aging and death. FEMS Yeast Res. 2014;14:109–18.

    Article  CAS  PubMed  Google Scholar 

  20. Kwolek-Mirek M, Zadrag-Tecza R. Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res. 2014;14:1068–79.

    CAS  PubMed  Google Scholar 

  21. Lloyd D, Hayes AJ. Vigour, vitality and viability of microorganisms. FEMS Microbiol Lett. 1995;133:1–7.

    Article  CAS  Google Scholar 

  22. Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K, et al. Guidelines and recommendations on yeast cell death nomenclature. Micro Cell. 2018;5:4–31.

    Article  CAS  Google Scholar 

  23. Prudêncio C, Sansonetty F, Côrte-Real M. Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae. Cytometry. 1998;31:307–13.

    Article  PubMed  Google Scholar 

  24. Attfield PV, Kletsas S, Veal DA, Van Rooijen R, Bell PJL. Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts. J Appl Microbiol. 2000;89:207–14.

    Article  CAS  PubMed  Google Scholar 

  25. Takaine M. QUEEN-based Spatiotemporal ATP Imaging in Budding and Fission Yeast. Bio Protocol. 2019;9:e3320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takakura H. Molecular Design of d-Luciferin-Based Bioluminescence and 1,2-Dioxetane-Based Chemiluminescence Substrates for Altered Output Wavelength and Detecting Various Molecules. Molecules. 2021;26:1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alves-Araújo C, Almeida MJ, Sousa MJ, Leão C. Freeze tolerance of the yeast Torulaspora delbrueckii: cellular and biochemical basis. FEMS Microbiol Lett. 2004;240:7–14.

    Article  PubMed  Google Scholar 

  28. Ludovico P, Côrte-Real M, Sansonetty F. Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology. 2001;147:3335–43.

    Article  CAS  PubMed  Google Scholar 

  29. Ruchaud S. Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J. 2002;21:1967–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature. 1999;401:168–73.

    Article  CAS  PubMed  Google Scholar 

  31. Yamin K, Assa M, Matityahu A, Onn I. Analyzing chromosome condensation in yeast by second-harmonic generation microscopy. Curr Genet. 2020;66:437–43.

    Article  CAS  PubMed  Google Scholar 

  32. Yamin K, Bijlani S, Berman J, Soni A, Shlomai J, Buragohain BM, et al. Fold-change of chromatin condensation in yeast is a conserved property. Sci Rep. 2022;12:17393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pereira C, Chaves S, Alves S, Salin B, Camougrand N, Manon S, et al. Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol. 2010;76:1398–410.

    Article  CAS  PubMed  Google Scholar 

  34. Kim H, Kim A, Cunningham KW. Vacuolar H+-ATPase (V-ATPase) Promotes Vacuolar Membrane Permeabilization and Nonapoptotic Death in Stressed Yeast. J Biol Chem. 2012;287:19029–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guérin R, Arseneault G, Dumont S, Rokeach LA. Calnexin Is Involved in Apoptosis Induced by Endoplasmic Reticulum Stress in the Fission Yeast. MBoC. 2008;19:4404–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martins VM, Fernandes TR, Lopes D, Afonso CB, Domingues MRM, Côrte-Real M, et al. Contacts in Death: The Role of the ER-Mitochondria Axis in Acetic Acid-Induced Apoptosis in Yeast. J Mol Biol. 2019;431:273–88.

    Article  CAS  PubMed  Google Scholar 

  37. Aerts AM, Zabrocki P, François IE, Carmona-Gutierrez D, Govaert G, Mao C, et al. Ydc1p ceramidase triggers organelle fragmentation, apoptosis and accelerated ageing in yeast. Cell Mol Life Sci 2008;65:1933–42.

    Article  CAS  PubMed  Google Scholar 

  38. Kajiwara K, Muneoka T, Watanabe Y, Karashima T, Kitagaki H, Funato K. Perturbation of sphingolipid metabolism induces endoplasmic reticulum stress-mediated mitochondrial apoptosis in budding yeast: Sphingolipids regulate ER stress-mediated yeast apoptosis. Mol Microbiol. 2012;86:1246–61.

    Article  CAS  PubMed  Google Scholar 

  39. Rello S, Stockert JC, Moreno V, Gámez A, Pacheco M, Juarranz A, et al. Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments. Apoptosis. 2005;10:201–8.

    Article  CAS  PubMed  Google Scholar 

  40. Hu X, Li Z, Lin R, Shan J, Yu Q, Wang R, et al. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol. 2021;9:634690.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Perrone GG, Tan SX, Dawes IW. Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta Mol Cell Res. 2008;1783:1354–68.

    Article  CAS  Google Scholar 

  42. Kalyanaraman B, Darley-Usmarb V, Kelvin JA, Davies KJA, Dennerye PA, Forman HJ, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med. 2012;52:1–6.

    Article  CAS  PubMed  Google Scholar 

  43. Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou L, Diaspro A, et al. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol. 2004;166:1055–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guaragnella N, Antonacci L, Giannattasio S, Marra E, Passarella S. Catalase T and Cu,Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae. FEBS Lett. 2008;582:210–4.

    Article  CAS  PubMed  Google Scholar 

  45. Martínez MC, Andriantsitohaina R. Reactive Nitrogen Species: Molecular Mechanisms and Potential Significance in Health and Disease. Antioxid Redox Signal. 2009;11:669–702.

    Article  PubMed  Google Scholar 

  46. Almeida B, Buttner S, Ohlmeier S, Silva A, Mesquita A, Sampaio-Marques B, et al. NO-mediated apoptosis in yeast. J Cell Sci. 2007;120:3279–88.

    Article  CAS  PubMed  Google Scholar 

  47. Dacquay LC, McMillen DR. Improving the design of an oxidative stress sensing biosensor in yeast. FEMS Yeast Res. 2021;21:foab025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lukyanov KA, Belousov VV. Genetically encoded fluorescent redox sensors. Biochim Biophys Acta Gen Subj. 2014;1840:745–56.

    Article  CAS  Google Scholar 

  49. Liu X, Qin L, Yu J, Sun W, Xu J, Li C. Real-time monitoring of subcellular states with genetically encoded redox biosensor system (RBS) in yeast cell factories. Biosens Bioelectron. 2023;222:114988.

    Article  CAS  PubMed  Google Scholar 

  50. Minina EA, Staal J, Alvarez VE, Berges JA, Berman-Frank I, Beyaert R, et al. Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Mol Cell. 2020;77:927–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Watanabe N, Lam E. Two Arabidopsis Metacaspases AtMCP1b and AtMCP2b Are Arginine/Lysine-specific Cysteine Proteases and Activate Apoptosis-like Cell Death in Yeast. J Biol Chem. 2005;280:14691–9.

    Article  CAS  PubMed  Google Scholar 

  52. Mazzoni C, Falcone C. Caspase-dependent apoptosis in yeast. Biochim Biophys Acta. 2008;1783:1320–7.

    Article  CAS  PubMed  Google Scholar 

  53. Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, et al. A caspase-related protease regulates apoptosis in yeast. Mol Cell. 2002;9:911–7.

    Article  CAS  PubMed  Google Scholar 

  54. Hill SM, Nyström T. The dual role of a yeast metacaspase: What doesn’t kill you makes you stronger. BioEssays. 2015;37:525–31.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wilkinson D, Ramsdale M. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae. Biochem Soc Trans. 2011;39:1502–8.

    Article  CAS  PubMed  Google Scholar 

  56. Silva A, Almeida B, Sampaio-Marques B, Reis MIR, Ohlmeier S, Rodrigues F, et al. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase. Biochim Biophys Acta Mol Cell Res. 2011;1813:2044–9.

    Article  CAS  Google Scholar 

  57. Bouvier LA, Niemirowicz GT, Salas‐Sarduy E, Cazzulo JJ, Alvarez VE. DNA‐damage inducible protein 1 is a conserved metacaspase substrate that is cleaved and further destabilized in yeast under specific metabolic conditions. FEBS J. 2018;285:1097–110.

    Article  CAS  PubMed  Google Scholar 

  58. Bozhkov PV, Smertenko AP, Zhivotovsky B. Aspasing Out Metacaspases and Caspases: Proteases of Many Trades. Sci Signal. 2010;3:pe48.

    Article  CAS  PubMed  Google Scholar 

  59. Green DR, Fitzgerald P. Just So Stories about the Evolution of Apoptosis. Curr Biol. 2016;26:R620–R627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aravind L, Iyer LM, Burroughs AM. Discovering Biological Conflict Systems Through Genome Analysis: Evolutionary Principles and Biochemical Novelty. Annu Rev Biomed Data Sci. 2022;5:367–91.

    Article  CAS  PubMed  Google Scholar 

  61. Ludovico P, Sousa MJ, Silva MT, Leão CL, Côrte-Real M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology. 2001;147:2409–15.

    Article  CAS  PubMed  Google Scholar 

  62. Phillips AJ, Crowe JD, Ramsdale M. Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA. 2006;103:726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zuo X, Zuo X, Djordjevic JT, Oei JB, Desmarini D, Schibeci SD, et al. Miltefosine Induces Apoptosis-Like Cell Death in Yeast via Cox9p in Cytochrome c Oxidase. Mol Pharm. 2011;80:476–85.

    Article  CAS  Google Scholar 

  64. Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, et al. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999;145:757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Madeo F, Fröhlich E, Fröhlich KU. A Yeast Mutant Showing Diagnostic Markers of Early and Late Apoptosis. J Cell Biol. 1997;139:729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laun P, Ramachandran L, Jarolim S, Herker E, Liang P, Wang J, et al. A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res. 2005;5:1261–72.

    Article  CAS  PubMed  Google Scholar 

  67. Ribeiro GF, Côrte-Real M, Johansson B. Characterization of DNA Damage in Yeast Apoptosis Induced by Hydrogen Peroxide, Acetic Acid, and Hyperosmotic Shock. MBoC. 2006;17:4584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muid KA, Karakaya HÇ, Koc A. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process. Biochem Biophys Res Commun. 2014;444:260–3.

    Article  CAS  PubMed  Google Scholar 

  69. Delobel P, Tesnière C. A Simple FCM Method to Avoid Misinterpretation in Saccharomyces cerevisiae Cell Cycle Assessment between G0 and Sub-G1. PLoS One. 2014;9:e84645.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fortuna M, Sousa MJ, Côrte-Real M, Leão C, Salvador A, Sansonetty F. Cell Cycle Analysis of Yeasts. CP Cytometry. 2000;13:11–13.

  71. Foland TB, Dentler WL, Suprenant KA, Gupta L, Himes RH. Paclitaxel-induced microtubule stabilization causes mitotic block and apoptotic-like cell death in a paclitaxel-sensitive strain of Saccharomyces cerevisiae. Yeast. 2005;22:971–8.

    Article  CAS  PubMed  Google Scholar 

  72. Aouida M, Mekid H, Belhadj O, Mir LM, Tounekti O. Mitochondria-independent morphological and biochemical apoptotic alterations promoted by the anti-tumor agent bleomycin in Saccharomyces cerevisiae. Biochem Cell Biol. 2007;85:49–55.

    Article  CAS  PubMed  Google Scholar 

  73. Del Carratore R, Croce CD, Simili M, Taccini E, Scavuzzo M, Sbrana S. Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae. Mutat Res Genet Toxicol Environ Mutagenesis. 2002;513:183–91.

    Article  Google Scholar 

  74. Cunha D, Cunha R, Côrte-Real M, Chaves SR. Cisplatin-induced cell death in Saccharomyces cerevisiae is programmed and rescued by proteasome inhibition. DNA Repair. 2013;12:444–9.

    Article  CAS  PubMed  Google Scholar 

  75. Almeida B, Sampaio-Marques B, Carvalho J, Silva MT, Leão C, Rodrigues F, et al. An atypical active cell death process underlies the fungicidal activity of ciclopirox olamine against the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2007;7:404–12.

    Article  CAS  PubMed  Google Scholar 

  76. Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, Daum G. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol. 1991;173:2026–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cerbón J, Calderón V. Changes of the compositional asymmetry of phospholipids associated to the increment in the membrane surface potential. Biochim Biophys Acta Biomembranes. 1991;1067:139–44.

    Article  Google Scholar 

  78. Yue Q, Xiong S, Cai D, Wu Z, Zhang X. Facile and quantitative electrochemical detection of yeast cell apoptosis. Sci Rep. 2014;4:4373.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunological Methods. 1995;184:39–51.

    Article  CAS  PubMed  Google Scholar 

  80. Pereira C, Camougrand N, Manon S, Sousa MJ, Côrte-Real M. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol. 2007;66:571–82.

    Article  CAS  PubMed  Google Scholar 

  81. Rego A, Costa M, Chaves SR, Matmati N, Pereira H, Sousa MJ, et al. Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism. PLoS One. 2012;7:e48571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roucou X, Prescott M, Devenish RJ, Nagley P. A cytochrome c -GFP fusion is not released from mitochondria into the cytoplasm upon expression of Bax in yeast cells. FEBS Lett. 2000;471:235–9.

    Article  CAS  PubMed  Google Scholar 

  83. Büttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, et al. Endonuclease G Regulates Budding Yeast Life and Death. Mol Cell. 2007;25:233–46.

    Article  PubMed  Google Scholar 

  84. Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T, et al. An AIF orthologue regulates apoptosis in yeast. J Cell Biol. 2004;166:969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ma F, Zhang Y, Wang Y, Wan Y, Miao Y, Ma T, et al. Role of Aif1 in regulation of cell death under environmental stress in Candida albicans: Role of Aif1 in Candida albicans. Yeast. 2016;33:493–506.

    Article  CAS  PubMed  Google Scholar 

  86. Pérez-Gallardo RV, Briones LS, Díaz-Péres AL, Gutiérrez S, Rodríguez-Zavala JS, Campos-García J. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res. 2013;13:804–19.

    Article  PubMed  Google Scholar 

  87. Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A. Toward the Complete Yeast Mitochondrial Proteome: Multidimensional Separation Techniques for Mitochondrial Proteomics. J Proteome Res. 2006;5:1543–54.

    Article  CAS  PubMed  Google Scholar 

  88. Vögtle FN, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou JC, et al. Intermembrane Space Proteome of Yeast Mitochondria. Mol Cell Proteom. 2012;11:1840–52.

    Article  Google Scholar 

  89. Eastwood MD, Cheung SWT, Lee KY, Moffat J, Meneghini MD. Developmentally Programmed Nuclear Destruction during Yeast Gametogenesis. Dev Cell. 2012;23:35–44.

    Article  CAS  PubMed  Google Scholar 

  90. Gourlay CW, Ayscough KR. Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae. Mol Cell Biol. 2006;26:6487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ferreira JCC, Lopes C, Preto A, Gonçalves MST, Sousa MJ. Novel Nile Blue Analogue Stains Yeast Vacuolar Membrane, Endoplasmic Reticulum, and Lipid Droplets, Inducing Cell Death through Vacuole Membrane Permeabilization. JoF. 2021;7:971.

    Article  PubMed  Google Scholar 

  92. Karim MA, Samyn DR, Mattie S, Brett CL. Distinct features of multivesicular body‐lysosome fusion revealed by a new cell‐free content‐mixing assay. Traffic. 2018;19:138–49.

    Article  CAS  PubMed  Google Scholar 

  93. Sokolov S, Sokolov S, Knorre D, Smirnova E, Markova O, Pozniakovsky A, et al. Ysp2 mediates death of yeast induced by amiodarone or intracellular acidification. Biochim Biophys Acta. 2006;1757:1366–70.

    Article  CAS  PubMed  Google Scholar 

  94. Andrés MT, Acosta-Zaldívar M, González-Seisdedos J, Fierro JF. Cytosolic Acidification Is the First Transduction Signal of Lactoferrin-induced Regulated Cell Death Pathway. IJMS. 2019;20:5838.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Santos-Pereira C, Andrés MT, Chaves SR, Fierro JF, Gerós H, Manon S, et al. Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae. Int J Biol Macromolecules. 2021;171:343–57.

    Article  CAS  Google Scholar 

  96. Yun DG, Lee DG. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans. Int J Biochem Cell Biol. 2016;80:1–9.

    Article  CAS  PubMed  Google Scholar 

  97. Pozniakovsky AI, Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, et al. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol. 2005;168:257–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Andrés MT, Viejo-Díaz M, Fierro JF. Human Lactoferrin Induces Apoptosis-Like Cell Death in Candida albicans: Critical Role of K+-Channel-Mediated K+ Efflux. Antimicrob Agents Chemother. 2008;52:4081–8.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Teng X, Cheng WC, Qi B, Yu TX, Ramachandran K, Boersma MD, et al. Gene-dependent cell death in yeast. Cell Death Dis. 2011;2:e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sousa M, Duarte AM, Fernandes TR, Chaves SR, Pacheco A, Leão C, et al. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics. 2013;14:838.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Singh K, Lee ME, Entezari M, Jung CH, Kim Y, Park Y, et al. Genome-Wide Studies of Rho5-Interacting Proteins That Are Involved in Oxidant-Induced Cell Death in Budding Yeast. G3 Genes Genomes Genet. 2019;9:921–31.

    Article  CAS  Google Scholar 

  102. Bharadwaj P, Martins RA. rapid absorbance-based growth assay to screen the toxicity of oligomer Aβ42 and protect against cell death in yeast. Neural Regen Res. 2020;15:1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jarolim S, Ayer A, Pillay B, Gee AC, Phrakaysone A, Perrone GG, et al. Saccharomyces cerevisiae Genes Involved in Survival of Heat Shock. G3 Genes Genomes Genet. 2013;3:2321–33.

    Article  Google Scholar 

  104. Turco G, Chang C, Wang RW, Kim G, Stoops EH, Richardson B, et al. Global analysis of the yeast knockout phenome. Sci Adv. 2023;9:eadg5702.

    Article  CAS  PubMed  Google Scholar 

  105. Silva A, Sampaio-Marques B, Fernandes A, Carreto L, Rodrigues F, Holcik M, et al. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid. PLoS One. 2013;8:e71294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cascio V, Gittings D, Merloni K, Hurton M, Laprade D, Austriaco N. S-Adenosyl-L-Methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death. BMC Microbiol. 2013;13:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Duc C, Pradal M, Sanchez I, Noble J, Tesnière C, Blondin B. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. PLoS One. 2017;12:e0184838.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dong Y, Hu J, Fan L, Chen Q. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Sci Rep. 2017;7:42659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weill U, Yofe I, Sass E, Stynen B, Davidi D, Natarajan J, et al. Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nat Methods. 2018;15:617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dubreuil B, Sass E, Nadav Y, Heidenreich M, Georgeson JM, et al. YeastRGB: comparing the abundance and localization of yeast proteins across cells and libraries. Nucleic Acids Res. 2019;47:D1245–D1249.

    Article  PubMed  Google Scholar 

  111. Koh JLY, Chong YT, Friesen H, Moses A, Boone C, Andrews BJ, et al. CYCLoPs: A Comprehensive Database Constructed from Automated Analysis of Protein Abundance and Subcellular Localization Patterns in Saccharomyces cerevisiae. G3 Genes Genomes Genet. 2015;5:1223–32.

    Article  Google Scholar 

  112. Breker M, Gymrek M, Moldavski O, Schuldiner M. LoQAtE—Localization and Quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast. Nucl Acids Res. 2014;42:D726–D730.

    Article  CAS  PubMed  Google Scholar 

  113. Magherini F, Tani C, Gamberi T, Caselli A, Bianchi L, Bini L, et al. Protein expression profiles in Saccharomyces cerevisiae during apoptosis induced by H2O2. Proteomics. 2007;7:1434–45.

    Article  CAS  PubMed  Google Scholar 

  114. Rego A, Cooper KF, Snider J, Hannun YA, Costa V, Côrte-Real M, et al. Acetic acid induces Sch9p-dependent translocation of Isc1p from the endoplasmic reticulum into mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:576–83.

    Article  CAS  PubMed  Google Scholar 

  115. Deprez MA, Maertens JM, Olsson L, Bettiga M, Winderickx J. The Role of Sch9 and the V-ATPase in the Adaptation Response to Acetic Acid and the Consequences for Growth and Chronological Lifespan. Microorganisms. 2021;9:1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Alexandrov AI, Grosfeld EV, Mitkevich OV, Bidyuk VA, Nostaeva AV, Kukhtevich IV et al. Systematic identification of yeast mutants with increased rates of cell death reveals rapid stochastic necrosis associated with cell division. bioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2021.10.20.465133v2.

  117. Krämer CEM, Wiechert W, Kohlheyer D. Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion. Sci Rep. 2016;6:32104.

    Article  PubMed  Google Scholar 

  118. Struyfs C, Breukers J, Spasic D, Lammertyn J, Cammue BPA, Thevissen K. Multiplex Analysis to Unravel the Mode of Antifungal Activity of the Plant Defensin HsAFP1 in Single Yeast Cells. IJMS. 2022;23:1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Váchová L, Palková Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res. 2018;18:4.

    Article  Google Scholar 

  120. Teng X, Dayhoff-Brannigan M, Cheng WC, Gilbert CE, Sing CN, Diny NL, et al. Genome-wide consequences of deleting any single gene. Mol Cell. 2013;52:485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang W, Li F, Nie L. Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology. 2010;156:287–301.

    Article  CAS  PubMed  Google Scholar 

  122. Misra BB, Langefeld C, Olivier M, Cox LA. Integrated omics: tools, advances and future approaches. J Mol Endocrinol. 2019;62:R21–R45.

    Article  CAS  Google Scholar 

  123. Dihazi H, Dihazi H, Asif AR, Beißbarth T, Bohrer R, Feussner K, et al. Integrative omics - from data to biology. Expert Rev Proteom. 2018;15:463–6.

    Article  CAS  Google Scholar 

  124. Silva RD, Sotoca R, Johansson B, Ludovico P, Sansonetty F, Silva MT, et al. Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae: Hyperosmotic stress induces yeast apoptosis. Mol Microbiol. 2005;58:824–34.

    Article  CAS  PubMed  Google Scholar 

  125. Acosta-Zaldívar M, Andrés MT, Rego A, Pereira CS, Fierro JF, Côrte-Real M. Human lactoferrin triggers a mitochondrial- and caspase-dependent regulated cell death in Saccharomyces cerevisiae. Apoptosis. 2016;21:163–73.

    Article  PubMed  Google Scholar 

  126. Cao S, Xu W, Zhang N, Wang Y, Luo Y, He X, et al. A Mitochondria-Dependent Pathway Mediates the Apoptosis of GSE-Induced Yeast. PLoS One. 2012;7:e32943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang H, Ren Q, Zhang Z. Chromosome or chromatin condensation leads to meiosis or apoptosis in stationary yeast (Saccharomyces cerevisiae) cells. FEMS Yeast Res. 2006;6:1254–63.

    Article  CAS  PubMed  Google Scholar 

  128. Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, et al. Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev. 2004;18:2785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cheng WC, Leach KM, Hardwick JM. Mitochondrial death pathways in yeast and mammalian cells. Biochim Biophys Acta Mol Cell Res. 2008;1783:1272–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ricardo Duarte for valuable insight. This work was supported by national funds (Portuguese Science Foundation, FCT) via the institutional program supporting CBMA (UIDB/04050/2020, https://doi.org/10.54499/UIDB/04050/2020) and funding to Susana Chaves https://doi.org/10.54499/DL57/2016/CP1377/CT0026.

Author information

Authors and Affiliations

Authors

Contributions

SC, AR, CP, MJS and MCR conceived ideas for this review article, planned for its content, and wrote the text. SC, AR, CP and MCR drafted the tables. AR and CP finalized the figures.

Corresponding authors

Correspondence to Susana R. Chaves or Manuela Côrte-Real.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, S.R., Rego, A., Santos-Pereira, C. et al. Current and novel approaches in yeast cell death research. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01298-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01298-2

Search

Quick links