Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AMPK inhibition sensitizes acute leukemia cells to BH3 mimetic-induced cell death

Abstract

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dorsomorphin or BAY-3827 inhibits BH3 mimetic-induced AMPK activation in ALL or AML cell lines.
Fig. 2: Dorsomorphin or BAY-3827 promotes BH3 mimetic-induced cell death in Jurkat and U937 cells.
Fig. 3: Dorsomorphin sensitizes clinical acute leukemic isolates to navitoclax or S63845.
Fig. 4: Dorsomorphin sensitizes to navitoclax/S63845-induced cell death through the mitochondrial pathway but does not alter BCL2 protein expression.
Fig. 5: BAD is essential for dorsomorphin-induced sensitization to navitoclax- or S63845-induced cell death in Jurkat cells.
Fig. 6: Dorsomorphin induces BAD phosphorylation at Ser75 and Ser99, which is important for dorsomorphin sensitization.
Fig. 7: Dorsomorphin plus navitoclax or S63845 inhibits xenograft growth in vivo.

Similar content being viewed by others

Data availability

This study includes no data deposited in external repositories. All the raw data and material reported in this paper will be shared by the lead contact upon request.

References

  1. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.

    Article  CAS  PubMed  Google Scholar 

  2. Reed JC. Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood. 2008;111:3322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sarosiek KA, Ni Chonghaile T, Letai A. Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol. 2013;23:612–9.

    Article  CAS  PubMed  Google Scholar 

  4. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63.

    Article  CAS  PubMed  Google Scholar 

  5. Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KL, Ding H, et al. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. Biochim Biophys Acta. 2015;1853:1658–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strasser A, Vaux DL. Cell death in the origin and treatment of cancer. Mol Cell. 2020;78:1045–54.

    Article  CAS  PubMed  Google Scholar 

  8. Cory S, Roberts AW, Colman PM, Adams JM. Targeting BCL-2-like proteins to kill cancer cells. Trends Cancer. 2016;2:443–60.

    Article  PubMed  Google Scholar 

  9. Roberts AW, Wei AH, Huang DCS. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood. 2021;138:1120–36.

    Article  CAS  PubMed  Google Scholar 

  10. Montero J, Haq R. Adapted to survive: targeting cancer cells with BH3 mimetics. Cancer Discov. 2022;12:1217–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22:45–64.

    Article  CAS  PubMed  Google Scholar 

  12. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:311–22.

    Article  CAS  PubMed  Google Scholar 

  14. Stilgenbauer S, Eichhorst B, Schetelig J, Soutre S, Seymour JF, Munir T, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016;17:768–78.

    Article  CAS  PubMed  Google Scholar 

  15. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29.

    Article  CAS  PubMed  Google Scholar 

  16. Wei AH, Montesinos P, Ivanov V, DiNardo CD, Novak J, Laribi K, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for the intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020;135:2137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–28.

    Article  CAS  PubMed  Google Scholar 

  18. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Toumelin-Braizat GL, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–82.

    Article  PubMed  Google Scholar 

  19. Davids MS, Letai A. Targeting the B-cell lymphoma/leukemia 2 family in cancer. J Clin Oncol. 2012;30:3127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Guo M, Wei H, Chen Y. Targeting MCL-1 in cancer: current status and perspectives. J Hematol Oncol. 2021;14:67.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roberts AW, Advani RH, Kahl BS, Persky D, Sweetenham JW, Carney DA, et al. Phase 1 study of the safety, pharmacokinetics, and antitumour activity of the BCL2 inhibitor navitoclax in combination with rituximab in patients with relapsed or refractory CD20+ lymphoid malignancies. Br J Haematol. 2015;170:669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kipps TJ, Eradat H, Grosicki S, Catalano J, Cosolo W, Dyagil IS, et al. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2015;56:2826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128:1173–86.

    Article  CAS  PubMed  Google Scholar 

  24. Josefsson EC, James C, Henley KJ, Debrincat MA, Rogers KL, Rowling MR, et al. Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelet. J Exp Med. 2011;208:2017–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szlavik Z, Csekei M, Paczal A, Szabo ZB, Sipos S, Radics G, et al. Discovery of S64315, a potent and selective Mcl-1 inhibitor. J Med Chem. 2020;63:13762–95.

    Article  CAS  PubMed  Google Scholar 

  26. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K, et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005;307:1101–4.

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Bathina M, Lynch J, Koss B, Calabrese C, Frase S, et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev. 2013;27:1351–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas RL, Roberts DJ, Kubli DA, Lee Y, Quinsay MN, Owens JB, et al. Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes Dev. 2013;27:1365–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hikita H, Takehara T, Shimizu S, Kodama T, Li W, Miyagi T, et al. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology. 2009;50:1217–26.

    Article  CAS  PubMed  Google Scholar 

  30. Brennan MS, Chang C, Tai L, Lessene G, Strasser A, Dewson G, et al. Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use. Blood. 2018;132:1573–83.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vucicevic L, Misirkic M, Janjetovic K, Harhaji-Trajkovic L, Prica M, Stevanovic D, et al. AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C. Biochem Pharmacol. 2009;77:1684–93.

    Article  CAS  PubMed  Google Scholar 

  33. Kfoury A, Armaro M, Collodet C, et al. AMPK promotes survival of c-Myc-positive melanoma cells by suppressing oxidative stress. EMBO J. 2018;37:e97673.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020;22:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li N, Wang T, Li Z, Ye X, Deng B, Zhuo S, et al. Dorsomorphin induces cancer cell apoptosis and sensitizes cancer cells to HSP90 and proteasome inhibitors by reducing nuclear heat shock factor 1 levels. Cancer Biol Med. 2019;16:220–33.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Avsec D, Jakoš Djordjevič AT, Kandušer M, Podgornik H, Škerget M, Mlinarič-Raščan I. Targeting autophagy triggers apoptosis and complements the action of venetoclax in chronic lymphocytic leukemia cells. Cancers. 2021;13:4557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lemos C, Schulze VK, Baumgart SJ, Nevedomskaya E, Heinrich T, Lefranc J, et al. The potent AMPK inhibitor BAY-3827 shows strong efficacy in androgen-dependent prostate cancer models. Cell Oncol. 2021;44:581–94.

    Article  CAS  Google Scholar 

  38. Dai H, Ding H, Peterson KL, Meng XW, Schneider PA, Knorr KLB, et al. Measurement of BH3-only protein tolerance. Cell Death Diff. 2018;25:282–93.

    Article  CAS  Google Scholar 

  39. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  CAS  PubMed  Google Scholar 

  40. Berenbaum MC. What is synergy? Pharmacol Rev. 1989;41:93–141.

    CAS  PubMed  Google Scholar 

  41. Guièze R, Liu VM, Rosebrock D, Jourdain AA, Hernández-Sánchez M, Martinez Zurita A, et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. Cancer Cell. 2019;36:369–84.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dai H, Ding H, Meng XW, Peterson KL, Schneider PA, Karp JE, Kaufmann SH. Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells. Genes Dev. 2015;29:2140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Juo P, Kuo CJ, Yuan J, Blenis J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol. 1998;8:1001–8.

    Article  CAS  PubMed  Google Scholar 

  44. Juo P, Woo MS, Kuo CJ, Signorelli P, Biemann HP, Hannun YA, et al. FADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth Differ. 1999;10:797–804.

    CAS  PubMed  Google Scholar 

  45. Dai H, Meng WX, Lee SH, Schneider PA, Kaufmann SH. Context-dependent Bcl-2/Bak interactions regulate lymphoid cell apoptosis. J Biol Chem. 2009;284:18311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu L, Chen M, Chen X, Zhao C, Fang Z, Wang H, Dai H. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 2020;11:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1:376–86.

    Article  CAS  PubMed  Google Scholar 

  48. Guo Y, Zhang Y, Hong K, Luo F, Gu Q, Lu N, et al. AMPK inhibition blocks ROS-NFkB signaling and attenuates endotoxemia-induced liver injury. PLoS One. 2014;9:e86881.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schoenwaelder SM, Jarman KE, Gardiner EE, Hua M, Qiao J, White MJ, et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood. 2011;118:1663–74.

    Article  CAS  PubMed  Google Scholar 

  50. Liu Z, Zhang G, Huang S, Cheng J, Deng T, Lu X, et al. Induction of apoptosis in hematological cancer cells by dorsomorphin correlates with BAD upregulation. Biochem Biophys Res Commun. 2020;522:704–8.

    Article  CAS  PubMed  Google Scholar 

  51. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    Article  CAS  PubMed  Google Scholar 

  52. Wang H-G, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell. 1996;87:629–38.

    Article  CAS  PubMed  Google Scholar 

  53. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bcl-XL. Cell. 1996;87:619–28.

    Article  CAS  PubMed  Google Scholar 

  54. Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell. 1999;3:413–22.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M, et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia. 2004;18:267–75.

    Article  CAS  PubMed  Google Scholar 

  56. Pereira JKN, Machado-Neto JA, Lopes MR, Morini BC, Traina F, Costa FF, et al. Molecular effects of the phosphatidylinositol-3-kinase inhibitor NVP-BKM120 on T and B-cell acute lymphoblastic leukaemia. Eur J Cancer. 2015;51:2076–85.

    Article  CAS  PubMed  Google Scholar 

  57. Sastry KS, AI-Muftah MA, Li P, AI-Kowari MK, Wang E, Chouchane AI, et al. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death Differ. 2014;21:1936–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rahmani M, Aust MM, Attkisson E, Williams DC Jr, Ferreira-Gonzalez A, Grant S, et al. Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. Cancer Res. 2013;73:1340–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We also acknowledge the assistance of the Mayo Clinic Proteomics Core, which is a shared resource of the Mayo Clinic Cancer Center (P30 CA15083).

Funding

This work is supported by the National Natural Science Foundation of China (No. 31970701 and No. 32100607), the Anhui Provincial Key R&D Program (No. 202104a07020007), and the co-operative grants from Anhui Medical University and Center of Medical Physics and Technology (Nos. LHJJ202006, LHJJ202007). Leukemia samples were collected with support of R01 CA225996, P30 CA015083 and P30 CA006973.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HD and SHK; Investigation: JJ, WJ, ANS, CMC, KY, LH, KLP, PAS, XWM, AV, XW, JZ, KSF, AP, HW, QD and HD; Clinical samples: ANS, MP, JAW, BDS, and GG; Writing: HD and SHK. The manuscript has been reviewed by all the authors.

Corresponding authors

Correspondence to Scott H. Kaufmann or Haiming Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All patients consented to an institutional review board protocols approved by the Johns Hopkins and Mayo Clinic institutional review boards. This study conforms to the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Ji, W., Saliba, A.N. et al. AMPK inhibition sensitizes acute leukemia cells to BH3 mimetic-induced cell death. Cell Death Differ 31, 405–416 (2024). https://doi.org/10.1038/s41418-024-01283-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-024-01283-9

Search

Quick links