Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The histone methyltransferase ASH1L protects against bone loss by inhibiting osteoclastogenesis

Abstract

Absent, small, or homeotic1-like (ASH1L) is a histone lysine methyltransferase that generally functions as a transcriptional activator in controlling cell fate. So far, its physiological relevance in bone homeostasis and osteoclast differentiation remains elusive. Here, by conditional deleting Ash1l in osteoclast progenitors of mice, we found ASH1L deficiency resulted in osteoporosis and potentiation of osteoclastogenesis in vivo and in vitro. Mechanistically, ASH1L binds the promoter of the Src homology 3 and cysteine-rich domain 2 (Stac2) and increases the gene’s transcription via histone 3 lysine 4 (H3K4) trimethylation modification, thus augmenting the STAC2’s protection against receptor activator of nuclear factor kB ligand (RANKL)-initiated inflammation during osteoclast formation. Collectively, we demonstrate the first piece of evidence to prove ASH1L as a critical checkpoint during osteoclastogenesis. The work sheds new light on our understanding about the biological function of ASH1L in bone homeostasis, therefore providing a valuable therapeutic target for the treatment of osteoporosis or inflammatory bone diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Myeloid-specific Ash1l knockout mice exhibit osteoporotic phenotypes.
Fig. 2: ASH1L deficiency promotes osteoclast differentiation ex vivo.
Fig. 3: ASH1L negatively regulates osteoclast formation in vitro and inhibits RANKL-induced inflammatory signaling activation.
Fig. 4: Stac2 gene expression coincides with that of Ash1l during osteoclast differentiation.
Fig. 5: ASH1L upregulates Stac2 expression via its H3K4 methyltransferase activity and potentiates STAC2’s inhibition against osteoclast formation.
Fig. 6: Ash1l expression declines in bone tissue and BMMs during aging process and is downregulated by miR-142-3p.
Fig. 7: Correlation analysis for Ash1l gene expression in inflammatory bone diseases.

Similar content being viewed by others

Data availability

RNA-seq data and CUT&Tag-seq data have been deposited at the NCBI Sequence Read Archive at https://www.ncbi.nlm.nih.gov/sra with accession number PRJNA947264 and PRJNA1065086. Other data in this study are available upon request from the corresponding author.

References

  1. Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells. 2017;40:706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kurotaki D, Yoshida H, Tamura T. Epigenetic and transcriptional regulation of osteoclast differentiation. Bone.2020;138:115471.

    Article  CAS  PubMed  Google Scholar 

  3. Oton-Gonzalez L, Mazziotta C, Iaquinta MR, Mazzoni E, Nocini R, Trevisiol L, et al. Genetics and epigenetics of bone remodeling and metabolic bone diseases. Int J Mol Sci. 2022;23:1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol. 2007;27:8466–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones M, Chase J, Brinkmeier M, Xu J, Weinberg DN, Schira J, et al. Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells. J Clin Investig. 2015;125:2007–20.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Byrd KN, Shearn A. ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA. 2003;100:11535–40.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maritz C, Khaleghi R, Yancoskie MN, Diethelm S, Brülisauer S, Ferreira NS, et al. ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair. Nat Commun. 2023;14:3892.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trissal MC, Wong TN, Yao J-C, Ramaswamy R, Kuo I, Baty J, et al. MIR142 loss-of-function mutations derepress ASH1L to increase hoxa gene expression and promote leukemogenesis. Cancer Res. 2018;78:3510–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xia M, Liu J, Wu X, Liu S, Li G, Han C, et al. Histone methyltransferase Ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity.2013;39:470–81.

    Article  CAS  PubMed  Google Scholar 

  10. Xia M, Liu J, Liu S, Chen K, Lin H, Jiang M, et al. Ash1l and lnc-Smad3 coordinate Smad3 locus accessibility to modulate iTreg polarization and T cell autoimmunity. Nat Commun. 2017;8:15818.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Du WJ, Yang H, Tong F, Liu S, Zhang C, Chen Y, et al. Ash1L ameliorates psoriasis via limiting neuronal activity-dependent release of miR-let-7b. Br J Pharmacol. 2023; https://doi.org/10.1111/bph.16254.

  12. Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET, for the National Bone Health Alliance Bone Turnover Marker Project. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int. 2017;28:2541–56.

    Article  CAS  PubMed  Google Scholar 

  13. Kodama J, Kaito T. Osteoclast multinucleation: review of current literature. Int J Mol Sci. 2020;21:5685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhattarai G, Kook SH, Kim JH, Poudel SB, Lim SS, Seo YK, et al. COMP-Ang1 prevents periodontitic damages and enhances mandible bone growth in an experimental animal model. Bone. 2016;92:168–79.

    Article  CAS  PubMed  Google Scholar 

  15. Bozec A, Zaiss MM, Kagwiria R, Voll R, Rauh M, Chen Z, et al. T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci Transl Med. 2014;6:235ra60.

    Article  PubMed  Google Scholar 

  16. Bradley EW, Ruan MM, Oursler MJ. Novel pro-survival functions of the Kruppel-like transcription factor Egr2 in promotion of macrophage colony-stimulating factor-mediated osteoclast survival downstream of the MEK/ERK pathway. J Biol Chem. 2008;283:8055–64.

    Article  CAS  PubMed  Google Scholar 

  17. Choi B, Kang SS, Kang SW, Min BH, Lee EJ, Song DH, et al. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation. Biochem Biophys Res Commun. 2014;450:105–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hu YS, Zhou H, Myers D, Quinn JM, Atkins GJ, Ly C, et al. Isolation of a human homolog of osteoclast inhibitory lectin that inhibits the formation and function of osteoclasts. J Bone Min Res. 2004;19:89–99.

    Article  CAS  Google Scholar 

  19. Huynh H, Wei W, Wan Y. mTOR Inhibition subdues milk disorder caused by maternal VLDLR loss. Cell Rep. 2017;19:2014–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeong E, Choi HK, Park JH, Lee SY. STAC2 negatively regulates osteoclast formation by targeting the RANK signaling complex. Cell Death Differ. 2018;25:1364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim HJ, Hong JM, Yoon KA, Kim N, Cho DW, Choi JY, et al. Early growth response 2 negatively modulates osteoclast differentiation through upregulation of Id helix-loop-helix proteins. Bone. 2012;51:643–50.

    Article  CAS  PubMed  Google Scholar 

  22. Kim JH, Kim K, Kim I, Seong S, Kim N. c-Src-dependent and -independent functions of matk in osteoclasts and osteoblasts. J Immunol. 2018;200:2455–63.

    Article  CAS  PubMed  Google Scholar 

  23. Kim WS, Kim HJ, Lee ZH, Lee Y, Kim HH. Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB. Exp Cell Res. 2013;319:436–46.

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Wei C, Xu L, Yu B, Chen Y, Lu D, et al. Schistosome infection promotes osteoclast-mediated bone loss. PLoS Pathog. 2021;17:e1009462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan R, Toubal A, Goñi S, Drareni K, Huang Z, Alzaid F, et al. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nat Med. 2016;22:780–91.

    Article  CAS  PubMed  Google Scholar 

  26. Soldi M, Mari T, Nicosia L, Musiani D, Sigismondo G, Cuomo A, et al. Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers. Nucleic Acids Res. 2017;45:12195–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature.2014;515:355–64.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim MJ, Kim HS, Lee S, Min KY, Choi WS, You JS. Hexosamine biosynthetic pathway-derived O-GlcNAcylation is critical for RANKL-mediated osteoclast differentiation. Int J Mol Sci. 2021;22:8888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  CAS  Google Scholar 

  30. Zhu L, Li Q, Wong SH, Huang M, Klein BJ, Shen J, et al. ASH1L links Histone H3 lysine 36 dimethylation to MLL leukemia. Cancer Discov. 2016;6:770–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin B, Yu F, Wang C, Li B, Liu M, Ye L. Epigenetic control of mesenchymal stem cell fate decision via histone methyltransferase Ash1l. Stem Cells. 2019;37:115–27.

    Article  CAS  PubMed  Google Scholar 

  32. Mcgeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, et al. The biochemical basis of microRNA targeting efficacy. Science. 2019;366:eaav1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Colamaio M, Puca F, Ragozzino E, Gemei M, Decaussin-Petrucci M, Aiello C, et al. miR-142–3p down-regulation contributes to thyroid follicular tumorigenesis by targeting ASH1L and MLL1. J Clin Endocrinol Metab. 2015;100:E59–E69.

    Article  CAS  PubMed  Google Scholar 

  34. Aging Atlas Consortium. Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res. 2021;49:D825–D830.

    Article  Google Scholar 

  35. Zheng Y, Liu X, Le W, Xie L, Li H, Wen W, et al. A human circulating immune cell landscape in aging and COVID-19. Protein Cell. 2020;11:740–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu YZ, Dvornyk V, Lu Y, Shen H, Lappe JM, Recker RR, et al. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J Biol Chem. 2005;280:29011–6.

    Article  CAS  PubMed  Google Scholar 

  37. Woetzel D, Huber R, Kupfer P, Pohlers D, Pfaff M, Driesch D, et al. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res Ther. 2014;16:R84.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast-osteoclast interactions. Connect Tissue Res 2018;59:99–107.

    Article  CAS  PubMed  Google Scholar 

  39. Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med. 2006;12:1403–9.

    Article  CAS  PubMed  Google Scholar 

  40. Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17:1473–80.

    Article  CAS  PubMed  Google Scholar 

  41. Li D, Liu J, Guo B, Liang C, Dang L, Lu C, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016;7:10872.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noble CL, Abbas AR, Cornelius J, Lees CW, Ho GT, Toy K, et al. Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis. Gut.2008;57:1398–405.

    Article  CAS  PubMed  Google Scholar 

  43. Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell. 2017;171:34–57.

    Article  CAS  PubMed  Google Scholar 

  44. Perugorria MJ, Wilson CL, Zeybel M, Walsh M, Amin S, Robinson S, et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology.2012;56:1129–39.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao X, Lin S, Li H, Si S, Wang Z. Myeloperoxidase controls bone turnover by suppressing osteoclast differentiation through modulating reactive oxygen species level. J Bone Miner Res. 2021;36:591–603.

    Article  CAS  PubMed  Google Scholar 

  46. Mabuchi Y, Houlihan DD, Akazawa C, Okano H, Matsuzaki Y. Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int. 2013;2013:507301.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shen J, Yang H, Qiao X, Chen Y, Zheng L, Lin J, et al. The E3 ubiquitin ligase TRIM17 promotes gastric cancer survival and progression via controlling BAX stability and antagonizing apoptosis. Cell Death Differ. 2023;30:2322–35.

    Article  CAS  PubMed  Google Scholar 

  48. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45:D658–D662.

    Article  CAS  PubMed  Google Scholar 

  49. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinform. 2014;15:293.

    Article  Google Scholar 

Download references

Funding

This work is supported by grants from the National Natural Science Foundation of China (No. 82100945) and the CAMS Innovation Fund for Medical Sciences (CIFMS) (Nos. 2021-I2M-1-055, 2021-I2M-1-030).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: ZW, XZ, SL; Development of methodology: XZ, SL, HR, SS, ZW; Acquisition of data: XZ, SL, HR, SS, LZ; Analysis and interpretation of data: XZ, SL, HR, ZW; Administrative, technical, or material support: ZW, LC. Writing of the manuscript: ZW, XZ, HR, LC. All the authors have authorized the submission.

Corresponding author

Correspondence to Zhen Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All experimental procedures were ethically approved by the Institutional Animal Care and Use Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Lin, S., Ren, H. et al. The histone methyltransferase ASH1L protects against bone loss by inhibiting osteoclastogenesis. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01274-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01274-w

Search

Quick links