Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-219-5p attenuates cisplatin resistance of ovarian cancer by inactivating Wnt/β-catenin signaling and autophagy via targeting HMGA2

Abstract

Our previous study confirmed that miR-219-5p inhibits the progression of ovarian cancer (OC) by targeting high mobility group AT-hook 2 (HMGA2), while the role of miR-219-5p on the chemoresistance of OC is unclear. HMGA2 and miR-219-5p expression in OC tumors and various types of OC cells were determined by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The miRNA profiles in A2780 and cisplatin-resistant A2780 cells were investigated via bulk miRNA sequencing, and the interactions of miR-219-5p and HMGA2 were determined by luciferase reporter activity assay. Cell function was verified through Cell Counting Kit-8, invasion assay, wound-healing, and TUNEL assays. HMGA2 level is highly expressed in cisplatin-resistant OC cell lines compared to normal OC cells, while the expression trend of miR-219-5p is the opposite. In addition, we found that miR-219-5p is one of the miRNAs that have the most significant reduction in levels in the cisplatin-resistant A2780/DDP cell line compared to A2780 cells. Then, we reveal that miR-219-5p directly targets HMGA2 in cisplatin-resistant OC cells, and upregulation of miR-219-5p significantly reduces the resistance of OC cells to cisplatin both in vitro and in vivo. Finally, our results suggest that Wnt/β-catenin signaling and autophagy pathway is involved in the role of miR-219-5p/HMGA2 on resistance of OC cells to cisplatin via gain-of-function experiments. Collectively, the present study shows that miR-219-5p decreases the resistance of OC cells to cisplatin via Wnt/β-catenin signaling and autophagy by regulating HMGA2, which provides a feasible solution for the resistance of OC to chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upregulated expression of high mobility group AT-hook 2 (HMGA2) in ovarian cancer (OC) is associated with the poor prognosis of patients.
Fig. 2: Decreased miR-219-5p level in OC is also related to the poor patient prognosis.
Fig. 3: miR-219-5p targets and downregulates HMGA2 in OC cells.
Fig. 4: miR-219-5p reduces the OC cell resistance to cisplatin.
Fig. 5: miR-219-5p limits the growth of OC tumors in a xenograft model.
Fig. 6: The increased cisplatin sensitivity of OC cells induced by miR-219-5p is related with Wnt/β-catenin signaling and autophagy.
Fig. 7: miR-219-5p-mediated increase in cisplatin sensitivity in SKOV3 OC cells is also associated with Wnt/β-catenin and autophagy.

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding authors.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393:1240–53.

    Article  PubMed  Google Scholar 

  3. Jelovac D, Armstrong DK. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J Clin. 2011;61:183–203.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003;21:3194–200.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou X, Chada K. HMGI family proteins: architectural transcription factors in mammalian development and cancer. Keio J Med. 1998;47:73–7.

    Article  CAS  PubMed  Google Scholar 

  6. Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat Rev Cancer. 2007;7:899–910.

    Article  CAS  PubMed  Google Scholar 

  7. Hammond SM, Sharpless NE. HMGA2, microRNAs, and stem cell aging. Cell. 2008;135:1013–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu J, Zhang S, Shan J, Hu Z, Liu X, Chen L, et al. Elevated HMGA2 expression is associated with cancer aggressiveness and predicts poor outcome in breast cancer. Cancer Lett. 2016;376:284–92.

    Article  CAS  PubMed  Google Scholar 

  9. Palumbo A Jr, Da Costa NM, Esposito F, De Martino M, D’Angelo D, de Sousa VP, et al. HMGA2 overexpression plays a critical role in the progression of esophageal squamous carcinoma. Oncotarget. 2016;7:25872–84.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu J, Wang Y, Xu X, Cao H, Sahengbieke S, Sheng H, et al. Transcriptional activation of FN1 and IL11 by HMGA2 promotes the malignant behavior of colorectal cancer. Carcinogenesis. 2016;37:511–21.

    Article  CAS  PubMed  Google Scholar 

  11. Agostini A, Brunetti M, Davidson B, Trope CG, Heim S, Panagopoulos I, et al. Genomic imbalances are involved in miR-30c and let-7a deregulation in ovarian tumors: implications for HMGA2 expression. Oncotarget. 2017;8:21554–60.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xing F, Song Z, He Y. MiR-219-5p inhibits growth and metastasis of ovarian cancer cells by targeting HMGA2. Biol Res. 2018;51:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferrarelli LK. Treating WNT-driven colorectal cancer. Science. 2017;356:1346–8.

    Article  PubMed  Google Scholar 

  14. Matsuzaki S, Botchorishvili R, Pouly JL, Canis M. Targeting the Wnt/beta-catenin pathway in endometriosis: a potentially effective approach for treatment and prevention. Mol Cell Ther. 2014;2:36.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Coopes A, Henry CE, Llamosas E, Ford CE. An update of Wnt signalling in endometrial cancer and its potential as a therapeutic target. Endocr Relat Cancer. 2018;ERC-18-0112.

  16. Huang M, Zhang D, Wu JY, Xing K, Yeo E, Li C et al. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med. 2020;12:eaay7522.

  17. Wickstrom M, Dyberg C, Milosevic J, Einvik C, Calero R, Sveinbjornsson B, et al. Wnt/beta-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat Commun. 2015;6:8904.

    Article  PubMed  Google Scholar 

  18. Zhang SF, Wang XY, Fu ZQ, Peng QH, Zhang JY, Ye F, et al. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy. 2015;11:225–38.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou C, Yi C, Yi Y, Qin W, Yan Y, Dong X, et al. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/beta-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer. 2020;19:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karasic TB, O’Hara MH, Loaiza-Bonilla A, Reiss KA, Teitelbaum UR, Borazanci E, et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 2019;5:993–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oronsky B, Ray CM, Spira AI, Trepel JB, Carter CA, Cottrill HM. A brief review of the management of platinum-resistant-platinum-refractory ovarian cancer. Med Oncol. 2017;34:103.

    Article  PubMed  Google Scholar 

  22. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170:548–63. e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Menon U, Gentry-Maharaj A, Burnell M, Singh N, Ryan A, Karpinskyj C, et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet. 2021;397:2182–93.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kleppe M, van der Aa MA, Van Gorp T, Slangen BF, Kruitwagen RF. The impact of lymph node dissection and adjuvant chemotherapy on survival: a nationwide cohort study of patients with clinical early-stage ovarian cancer. Eur J Cancer. 2016;66:83–90.

    Article  PubMed  Google Scholar 

  25. Cocco E, Deng Y, Shapiro EM, Bortolomai I, Lopez S, Lin K, et al. Dual-targeting nanoparticles for in vivo delivery of suicide genes to chemotherapy-resistant ovarian cancer cells. Mol Cancer Ther. 2017;16:323–33.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng J, Deng R, Zhang P, Wu C, Wu K, Shi L, et al. miR-219-5p plays a tumor suppressive role in colon cancer by targeting oncogene Sall4. Oncol Rep. 2015;34:1923–32.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Zhu L, Jiang Y, Xu J, Wang F, He Z. miR-219-5p suppresses the proliferation and invasion of colorectal cancer cells by targeting calcyphosin. Oncol Lett. 2017;13:1319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ting G, Li X, Kwon HY, Ding T, Zhang Z, Chen Z, et al. microRNA-219-5p targets NEK6 to inhibit hepatocellular carcinoma progression. Am J Transl Res. 2020;12:7528–41.

    PubMed  PubMed Central  Google Scholar 

  29. Huang WT, Zhang H, Jin Z, Li K, Hu C, Li ML, et al. MiR-219-5p inhibits prostate cancer cell growth and metastasis by targeting HMGA2. Eur Rev Med Pharm Sci. 2020;24:4710–8.

    Google Scholar 

  30. Ye Q, Wang X, Yuan M, Cui S, Chen Y, Hu Z et al. miR-219-5p targets TBXT and inhibits breast cancer cell EMT and cell migration and invasion. Biosci Rep 2021; 41:BSR20210318.

  31. Li X, Sun L, Chen L, Xu Y, Kong X. Upregulation of microRNA-219-5p relieves ulcerative colitis through balancing the differentiation of Treg/Th17 cells. Eur J Gastroenterol Hepatol. 2020;32:813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lou W, Zhang X, Hu XY, Hu AR. MicroRNA-219-5p inhibits morphine-induced apoptosis by targeting key cell cycle regulator WEE1. Med Sci Monit. 2016;22:1872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei JJ, Wu J, Luan C, Yeldandi A, Lee P, Keh P, et al. HMGA2: a potential biomarker complement to P53 for detection of early-stage high-grade papillary serous carcinoma in fallopian tubes. Am J Surg Pathol. 2010;34:18–26.

    Article  PubMed  Google Scholar 

  34. Mahajan A, Liu Z, Gellert L, Zou X, Yang G, Lee P, et al. HMGA2: a biomarker significantly overexpressed in high-grade ovarian serous carcinoma. Mod Pathol. 2010;23:673–81.

    Article  CAS  PubMed  Google Scholar 

  35. Hristov AC, Cope L, Reyes MD, Singh M, Iacobuzio-Donahue C, Maitra A, et al. HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Mod Pathol. 2009;22:43–9.

    Article  CAS  PubMed  Google Scholar 

  36. Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA. 2007;104:11400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell. 2008;135:227–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y, Nakao M. HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol. 2009;174:854–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Malek A, Bakhidze E, Noske A, Sers C, Aigner A, Schafer R, et al. HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int J Cancer. 2008;123:348–56.

    Article  CAS  PubMed  Google Scholar 

  40. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell. 2012;149:1245–56.

    Article  CAS  PubMed  Google Scholar 

  41. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  42. Petherick KJ, Williams AC, Lane JD, Ordonez-Moran P, Huelsken J, Collard TJ, et al. Autolysosomal beta-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J. 2013;32:1903–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the project of Shanghai Zhabei Central Hospital construction of important and weak medical disciplines (2021BR03).

Author information

Authors and Affiliations

Authors

Contributions

Concepts: F.X., Z.S., and S.W.; resources: F.X. and S.W.; experiments and data analysis: Z.S., L.Y., X.X., X.S., and S.T.; bioinformatics and manuscript preparation: C.L. and F.X.; revision and editing: Z.S., F.X., and S.W. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shuo Wang or Feng Xing.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics statement

This study received approval from the Ethics Committee of Shanghai Zhabei Central Hospital, and all patients and participants signed informed consent. The procedures involving animals were approved by the Institutional Animal Care and Use Committee (IACUC) of Tongji University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Liao, C., Yao, L. et al. miR-219-5p attenuates cisplatin resistance of ovarian cancer by inactivating Wnt/β-catenin signaling and autophagy via targeting HMGA2. Cancer Gene Ther 30, 596–607 (2023). https://doi.org/10.1038/s41417-022-00574-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00574-y

Search

Quick links