Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: BET inhibitor I-BET151 sensitizes GBM cells to temozolomide via PUMA induction

This article was retracted on 20 September 2022

A Correction to this article was published on 01 February 2019

This article has been updated

Abstract

A significant roadblock in treatment of GBM multiforme (GBM) is resistance to temozolomide (TMZ). In this study, we investigated whether I-BET151, a specific BET inhibitor, could sensitize GBM cells to TMZ. Our findings showed that the action of I-BET151 could augment the effect of TMZ on cancer cells U251 and U87 cells. In U251 cells, administration of I-BET151 increased the TMZ-induced apoptosis GBM cells. I-BET151 remarkably enhanced the activities of caspase-3. In addition, I-BET151 promoted TMZ-induced migration and invasion in GBM cells. Moreover, I-BET151 increased the amount of reactive oxygen species as well as superoxide anions with a decrease of activity of SOD and the anti-oxidative properties of GBM cells. I-BET151 also induced increased PUMA expression, which is required for the functions of I-BET151 and regulates the synergistic cytotoxic effects of i-BET151 and TMZ in GBM cells. I-BET151 with TMZ also showed synergistic cytotoxic effects in vivo. These point out to an approach to tackle GBM using TMZ along with BET inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: I-BET151 sensitizes TMZ-induced apoptosis in GBM cells
Fig. 2: I-BET151 promotes TMZ-mediated anti-migratory and anti-invasive properties
Fig. 3: I-BET151 augments TMZ-induced ROS production in GBM cells
Fig. 4: I-BET151 promotes PUMA induction in GBM cells
Fig. 5: PUMA mediates the efficacy of I-BET151 and TMZ action in GBM cells
Fig. 6: I-BET151 promotes the antitumor effects of TMZ in vivo

Similar content being viewed by others

Change history

  • 01 February 2019

    All animal experiments were approved by the Animal Care and Use Committee (ACUC), Louisiana State University Health Science Center and not The People's Hospital of Liaoning Province as indicated in the original version of the Article. The PDF and HTML versions of the Article have been modified accordingly.

  • 20 September 2022

    This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1038/s41417-022-00536-4

References

  1. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjhee ShU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18:3–9.

    PubMed  PubMed Central  Google Scholar 

  2. Shergalis A, et al. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018;70:412–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guan X, Hasan MN, Maniar S, Jia W, Sun D. Reactive astrocytes in glioblastoma multiforme. Mol Neurobiol. 2018;55:6927–6938.

    Article  CAS  PubMed  Google Scholar 

  4. Smrdel U, et al. Long-term survival in glioblastoma: methyl guanine methyl transferase (MGMT) promoter methylation as independent favourable prognostic factor. Radiol Oncol. 2016;50:394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lai RK, et al. Genome-wide methylation analyses in glioblastoma multiforme. PLoS ONE. 2014;9:e89376.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fan CH, et al. methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death Dis. 2013;4:e876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Valtorta S, et al. Metformin and temozolomide, a synergic option to overcome resistance in glioblastoma multiforme models. Oncotarget. 2017;8:113090–113104.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johannessen TC, Bjerkvig R. Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev AntiCancer Ther. 2012;12:635–642.

    Article  CAS  PubMed  Google Scholar 

  9. St-Coeur PD, Cormier M, LeBlanc VC, Morin PJ, Touaibia M. Effect of O6-substituted guanine analogs on O6-methylguanine DNA-methyltransferase expression and glioblastoma cells viability. Med Chem. 2016;13:28–39.

    Article  PubMed  Google Scholar 

  10. Anderson JC, et al. Kinomic exploration of temozolomide and radiation resistance in glioblastoma multiforme xenolines. Radiother Oncol. 2014;111:468–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol. 2017;28:1776–1787.

    Article  CAS  PubMed  Google Scholar 

  12. Lochrin SE, Price DK, Figg WD. BET bromodomain inhibitors--a novel epigenetic approach in castration-resistant prostate cancer. Cancer Biol Ther. 2014;15:1583–1585.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bartholomeeusen K, Xiang Y, Fujinaga K, Peterlin BM. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. J Biol Chem. 2012;287:36609–36616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loven J, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ocana A, Nieto-Jimenez C, Pandiella A. BET inhibitors as novel therapeutic agents in breast cancer. Oncotarget. 2017;8:71285–71291.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wadhwa E, Nicolaides T. Bromodomain inhibitor review: bromodomain and extra-terminal family protein inhibitors as a potential new therapy in central nervous system tumors. Cureus. 2016;8:e620.

    PubMed  PubMed Central  Google Scholar 

  17. Zhang X., et al. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia. 2018;32:2224–2239.

  18. Ott CJ, et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012;120:2843–2852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delmore JE, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaidos A, Caputo V, Karadimitris A. Inhibition of bromodomain and extra-terminal proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging preclinical and clinical evidence. Ther Adv Hematol. 2015;6:128–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knickelbein K, et al. Restoring PUMA induction overcomes KRAS-mediated resistance to anti-EGFR antibodies in colorectal cancer. Oncogene. 2018;37:4599–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huo L, Bai X, Wang Y, Wang M. Betulinic acid derivative B10 inhibits glioma cell proliferation through suppression of SIRT1, acetylation of FOXO3a and upregulation of Bim/PUMA. Biomed Pharmacother. 2017;92:347–355.

    Article  CAS  PubMed  Google Scholar 

  23. Xing SG, Zhang KJ, Qu JH, Ren YD, Luan Q. Propofol induces apoptosis of non-small cell lung cancer cells via ERK1/2-dependent upregulation of PUMA. Eur Rev Med Pharmacol Sci. 2018;22:4341–4349.

    PubMed  Google Scholar 

  24. Ma J, Feng Y, Liu Y, Li X. PUMA and survivin are involved in the apoptosis of HepG2 cells induced by microcystin-LR via mitochondria-mediated pathway. Chemosphere. 2016;157:241–249.

    Article  CAS  PubMed  Google Scholar 

  25. Hikisz P, Kilianska ZMPUMA. a critical mediator of cell death--one decade on from its discovery. Cell Mol Biol Lett. 2012;17:646–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin L, Ding D, Jiang Y, Li Y, Li S. MEK inhibitors induce apoptosis via FoxO3a-dependent PUMA induction in colorectal cancer cells. Oncogenesis. 2018;7:67.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sun L, et al. Ipatasertib, a novel Akt inhibitor, induces transcription factor FoxO3a and NF-kappaB directly regulates PUMA-dependent apoptosis. Cell Death Dis. 2018;9:911.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang S, et al. NVP-BKM120 inhibits colon cancer growth via FoxO3a-dependent PUMA induction. Oncotarget. 2017;8:83052–83062.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang LN, Li JY, Xu W. A review of the role of Puma, Noxa and Bim in the tumorigenesis, therapy and drug resistance of chronic lymphocytic leukemia. Cancer Gene Ther. 2013;20:1–7.

    Article  PubMed  Google Scholar 

  30. Chipuk JE, Green DR. PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Cell Cycle. 2009;8:2692–2696.

    Article  CAS  PubMed  Google Scholar 

  31. Tong J, et al. Mcl-1 phosphorylation without degradation mediates sensitivity to HDAC inhibitors by liberating BH3-only proteins. Cancer Res. 2018;78:4704–4715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tong J, Tan S, Zou F, Yu J, Zhang L. FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation. Oncogene. 2017;36:787–796.

    Article  CAS  PubMed  Google Scholar 

  33. Tong J, et al. FBW7-dependent Mcl-1 degradation mediates the anticancer effect of Hsp90 inhibitors. Mol Cancer Ther. 2017;16:1979–1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tong J, et al. Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res. 2017;77:2512–2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis ME. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20:S2–S8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol. 2018;9:170.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barciszewska AM, Gurda D, Glodowicz P, Nowak S, Naskret-Barciszewska MZ. A new epigenetic mechanism of temozolomide action in glioma cells. PLoS ONE. 2015;10:e0136669.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zain J, Kaminetzky D, O’Connor OA. Emerging role of epigenetic therapies in cutaneous T-cell lymphomas. Expert Rev Hematol. 2010;3:187–203.

    Article  CAS  PubMed  Google Scholar 

  39. Sharma S, Gurudutta G. Epigenetic regulation of hematopoietic stem cells. Int J Stem Cells. 2016;9:36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Segatto M, et al. Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nat Commun. 2017;8:1707.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Long J, et al. The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of hedgehog protein-driven cancers. J Biol Chem. 2014;289:35494–35502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feng E, Sui C, Wang T, Sun G. Temozolomide with or without radiotherapy in patients with newly diagnosed glioblastoma multiforme: a meta-analysis. Eur Neurol. 2017;77:201–210.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng Z, et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin Cancer Res. 2013;19:1748–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu Y., Vakoc C. R. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb Perspect Med 2017;7:pii:a026674.

  45. Aird F., Kandela I., Mantis C., Reproducibility project: Cancer B. Replication Study: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. eLife. 2017;6:e21253.

  46. da Motta LL, et al. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017;36:122–132.

    Article  PubMed  Google Scholar 

  47. Shamas-Din A, Kale J, Leber B, Andrews DW. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5:a008714.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80.

    Article  CAS  PubMed  Google Scholar 

  49. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta. 2011;1813:508–520.

    Article  CAS  PubMed  Google Scholar 

  50. Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27:S71–p83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen D, et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci USA. 2018;115:3930–3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1038/s41417-022-00536-4

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Yang, S., Zhao, H. et al. RETRACTED ARTICLE: BET inhibitor I-BET151 sensitizes GBM cells to temozolomide via PUMA induction. Cancer Gene Ther 27, 226–234 (2020). https://doi.org/10.1038/s41417-018-0068-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0068-4

Search

Quick links