Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular

DRP1 inhibition-mediated mitochondrial elongation abolishes cancer stemness, enhances glutaminolysis, and drives ferroptosis in oral squamous cell carcinoma

Abstract

Background

Mitochondrial dynamics play a fundamental role in determining stem cell fate. However, the underlying mechanisms of mitochondrial dynamics in the stemness acquisition of cancer cells are incompletely understood.

Methods

Metabolomic profiling of cells were analyzed by MS/MS. The genomic distribution of H3K27me3 was measured by CUT&Tag. Oral squamous cell carcinoma (OSCC) cells depended on glucose or glutamine fueling TCA cycle were monitored by 13C-isotope tracing. Organoids and tumors from patients and mice were treated with DRP1 inhibitors mdivi-1, ferroptosis inducer erastin, or combination with mdivi-1 and erastin to evaluate treatment effects.

Results

Mitochondria of OSCC stem cells own fragment mitochondrial network and DRP1 is required for maintenance of their globular morphology. Imbalanced mitochondrial dynamics induced by DRP1 knockdown suppressed stemness of OSCC cells. Elongated mitochondria increased α-ketoglutarate levels and enhanced glutaminolysis to fuel the TCA cycle by increasing glutamine transporter ASCT2 expression. α-KG promoted the demethylation of histone H3K27me3, resulting in downregulation of SNAI2 associated with stemness and EMT. Significantly, suppressing DRP1 enhanced the anticancer effects of ferroptosis.

Conclusion

Our study reveals a novel mechanism underlying mitochondrial dynamics mediated cancer stemness acquisition and highlights the therapeutic potential of mitochondria elongation to increase the susceptibility of cancer cells to ferroptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OSCCSCs and non-OSCCSCs tumor cells display distinct mitochondrial morphologies.
Fig. 2: DRP1 knockdown suppressed cancer cell proliferation, migration and stemness.
Fig. 3: Mitochondrial fusion promote enhanced mitochondrial respiration and abundant TCA cycle metabolites.
Fig. 4: Elongated mitochondria enhance glutaminolysis to fuel the TCA cycle by increasing ASCT2 expression.
Fig. 5: α-KG alters H3K27 trimethylation and its occupancy at stemness associated gene and snai2 gene region to inhibit their expression in DRP1 knockdown cells.
Fig. 6: Combination of inhibition DRP1 and ferroptosis inducer erastin is therapeutic.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma-an update. CA Cancer J Clin. 2015;65:401–21.

    Article  PubMed  Google Scholar 

  3. Lee NY, Ferris RL, Psyrri A, Haddad RI, Tahara M, Bourhis J, et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 2021;22:450–62.

    Article  CAS  PubMed  Google Scholar 

  4. Vlashi E, Pajonk F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol. 2015;31:28–35.

    Article  CAS  PubMed  Google Scholar 

  5. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16:225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Du L, Cheng Q, Zheng H, Liu J, Liu L, Chen Q. Targeting stemness of cancer stem cells to fight colorectal cancers. Semin Cancer Biol. 2022;82:150–61.

    Article  PubMed  Google Scholar 

  7. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  CAS  PubMed  Google Scholar 

  8. Kaushik V, Kulkarni Y, Felix K, Azad N, Iyer AKV, Yakisich JS. Alternative models of cancer stem cells: the stemness phenotype model, 10 years later. World J Stem Cells. 2021;13:934–43.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab. 2022;4:802–12.

    Article  PubMed  Google Scholar 

  10. Chen H, Chan DC. Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab. 2017;26:39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fonseca TB, Sánchez-Guerrero Á, Milosevic I, Raimundo N. Mitochondrial fission requires DRP1 but not dynamins. Nature. 2019;570:E34–E42.

    Article  CAS  PubMed  Google Scholar 

  12. Chung KP, Hsu CL, Fan LC, Huang Z, Bhatia D, Chen YJ, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019;10:3390.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baker N, Wade S, Triolo M, Girgis J, Chwastek D, Larrigan S, et al. The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem Cell. 2022;29:1315–1332.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khacho M, Clark A, Svoboda DS, Azzi J, MacLaurin JG, Meghaizel C, et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell. 2016;19:232–47.

    Article  CAS  PubMed  Google Scholar 

  15. Naik PP, Birbrair A, Bhutia SK. Mitophagy-driven metabolic switch reprograms stem cell fate. Cell Mol Life Sci. 2019;76:27–43.

    Article  CAS  PubMed  Google Scholar 

  16. Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vazquez-Martin A, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Vellon L, Menendez JA. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging. 2012;4:393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prieto J, León M, Ponsoda X, García-García F, Bort R, Serna E, et al. Dysfunctional mitochondrial fission impairs cell reprogramming. Cell Cycle. 2016;15:3240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schimmer AD. Mitochondrial shapeshifting impacts AML stemness and differentiation. Cell Stem Cell. 2018;23:3–4.

    Article  CAS  PubMed  Google Scholar 

  20. Bonnay F, Veloso A, Steinmann V, Köcher T, Abdusselamoglu MD, Bajaj S, et al. Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis. Cell. 2020;182:1490–507.

    Article  CAS  PubMed  Google Scholar 

  21. Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12:599–612.

    Article  CAS  PubMed  Google Scholar 

  22. Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 2017;18:985–94.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, He C, Zhang L, Zhu T, Lv D, Li G, et al. Alpha-ketoglutarate affects murine embryo development through metabolic and epigenetic modulations. Reproduction. 2019;158:123–33.

    Article  PubMed  Google Scholar 

  24. Lee S, Kim HS, Kim MJ, Min KY, Choi WS, You JS. Glutamine metabolite α-ketoglutarate acts as an epigenetic co-factor to interfere with osteoclast differentiation. Bone. 2021;145:115836.

    Article  CAS  PubMed  Google Scholar 

  25. Kang HS, Lee JH, Oh KJ, Lee EW, Han BS, Park KY, et al. IDH1-dependent α-KG regulates brown fat differentiation and function by modulating histone methylation. Metabolism. 2020;105:154–73.

    Article  Google Scholar 

  26. Han Y, Villarreal-Ponce A, Gutierrez G Jr, Nguyen Q, Sun P, et al. Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Rep. 2022;38:110240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie C, Wang FY, Sang Y, Chen B, Huang JH, He FJ, et al. Mitochondrial micropeptide STMP1 enhances mitochondrial fission to promote tumor metastasis. Cancer Res. 2022;82:2431–43.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Li TE, Chen M, Xu D, Zhu Y, Hu BY, et al. MFN1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming. Br J Cancer. 2020;122:209–20.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Jiang H, Cai LY, Ji N, Zeng X, Zhou Y, et al. Repurposing disulfiram to induce OSCC cell death by cristae dysfunction promoted autophagy. Oral Dis. 2021;27:1148–60.

    Article  PubMed  Google Scholar 

  30. Liu C, Qiang J, Deng Q, Xia J, Deng L, Zhou L, et al. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 2021;81:5919–34.

    Article  CAS  PubMed  Google Scholar 

  31. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang S, Xiong X, Sun Y. Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther. 2020;5:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Z, Wang HW, Wang S, Fan L, Feng S, Cai X, et al. USP9X deubiquitinates ALDH1A3 and maintains mesenchymal identity in glioblastoma stem cells. J Clin Invest. 2019;129:2043–55.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;277:121110.

    Article  CAS  PubMed  Google Scholar 

  35. Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 2020;368:85–89.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166:63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang CW, Chen YS, Tsay YG, Han CL, Chen YJ, Yang CC, et al. ROS-independent ER stress-mediated NRF2 activation promotes warburg effect to maintain stemness-associated properties of cancer-initiating cells. Cell Death Dis. 2018;9:194.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lu H, Li X, Lu Y, Qiu S, Fan Z. ASCT2 (SLC1A5) is an EGFR-associated protein that can be co-targeted by cetuximab to sensitize cancer cells to ROS-induced apoptosis. Cancer Lett. 2016;381:23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Z, Liu R, Shuai Y, Huang Y, Jin R, Wang X, et al. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br J Cancer. 2020;122:82–93.

    Article  CAS  PubMed  Google Scholar 

  40. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:157.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim H, Scimia MC, Wilkinson D, Trelles RD, Wood MR, Bowtell D, et al. Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. Mol Cell. 2011;44:532–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu X, Hajnóczky G. Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ. 2011;18:1561–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci. 2008;105:18782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154:61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang CW, Chen YS, Chou SH, Han CL, Chen YJ, Yang CC, et al. Distinct subpopulations of head and neck cancer cells with different levels of intracellular reactive oxygen species exhibit diverse stemness, proliferation, and chemosensitivity. Cancer Res. 2014;74:6291–305.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (81902784, 82370974, 81771086), by the Fund of Sichuan Provincial Department of science and technology (2022YFSY0058, 2022YFS0039, 2022YFS0003), the Research and Develop Program, West China Hospital of Stomatology, Sichuan University (LCYJ2023-DL-2, RD-02-202002), the CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-004). The funding agencies had no role in the study design, collection, analysis, or interpretation of data, writing of the report, or the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

Zhen Wang: Conceptualization, data curation, investigation, writing–original draft. Shouyi Tang: Conceptualization, data curation, formal analysis, investigation, writing–original draft, writing–review and editing. Luyao Cai, Yunmei Dong, Dan Pan, Qing Wang: Conceptualization, data curation, Investigation. Hao Zhou, Jing Li, Ning Ji, Xin Zeng: Conceptualization, resources, supervision, project administration, writing–review and editing. Yu Zhou: Conceptualization, resources, supervision, funding acquisition, writing–original draft, project administration, writing–review and editing. Yingqiang Shen: Conceptualization, resources, supervision, funding acquisition, writing–original draft, project administration, writing–review and editing. Qianming Chen: Conceptualization, resources, supervision, funding acquisition, writing–original draft, project administration, writing–review and editing.

Corresponding authors

Correspondence to Yu Zhou or Ying-qiang Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the ethics committees of the West China Hospital of Stomatology [WCHSIRB-D-2019-006]. This study was conducted following the Declaration of Helsinki. All participants eligible for this study had completed a written informed consent form.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Tang, S., Cai, L. et al. DRP1 inhibition-mediated mitochondrial elongation abolishes cancer stemness, enhances glutaminolysis, and drives ferroptosis in oral squamous cell carcinoma. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02670-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02670-2

Search

Quick links