Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

EIF4A3-negatively driven circular RNA β-catenin (circβ-catenin) promotes colorectal cancer progression via miR-197-3p/CTNND1 regulatory axis

Abstract

Background

Circβ-catenin, our first reported circRNA, has been reported to mediate tumorigenesis in various cancers. However, its biological functions and underlying mechanisms in colorectal cancer (CRC) remain unknown.

Methods

The qRT-PCR examination was used to detect the expression of circβ-catenin, miR-197-3p, and CTNND1 in cells and human tissues. Western blot was conducted to detect the protein expression levels. The biological function of circβ-catenin was verified by MTT, colony formation, wound healing, and transwell assays. The in vivo effects of circβ-catenin were verified by nude mice xenograft and metastasis models. The regulatory network of circβ-catenin/miR-197-3p/CTNND1 was confirmed via dual-luciferase reporter and RIP assays.

Results

In the present study, circβ-catenin was found to promote CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, circβ-catenin served as miRNA decoy to directly bind to miR-197-3p, then antagonized the repression of the target gene CTNND1, and eventually promoted the malignant phenotype of CRC. More interestingly, the inverted repeated Alu pairs termed AluJb1/2 and AluY facilitated the biogenesis of circβ-catenin, which could be partially reversed by EIF4A3 binding to Alu element AluJb2.

Conclusions

Our findings illustrated a novel mechanism of circβ-catenin in modulating CRC tumorigenesis and metastasis, which provides a potential therapeutic target for CRC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of circβ-catenin in CRC cells.
Fig. 2: Circβ-catenin promoted the proliferation and metastasis in vitro and in vivo.
Fig. 3: Circβ-catenin acted as a miRNA decoy for miR-197-3p in CRC cells.
Fig. 4: CTNND1 was the direct target for miR-197-3p.
Fig. 5: Circβ-catenin stimulated CRC cell proliferation and metastasis via targeting miR-197-3p.
Fig. 6: EIF4A3 negatively regulated the biogenesis of circβ-catenin through interacting with the Alu element.

Similar content being viewed by others

References

  1. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14:101174.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer. 2019;18:116.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–91.

    Article  PubMed  Google Scholar 

  4. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.

    Article  CAS  PubMed  Google Scholar 

  5. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–58.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14:361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of CircRNAs. Mol Cell. 2017;66:9–21.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Li P, Chen S, Chen H, Mo X, Li T, Shao Y, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–6.

    Article  CAS  PubMed  Google Scholar 

  10. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16:94.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science. 2013;340:440–1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015;18:603–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, et al. Translation of the circular RNA circbeta-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 2019;20:84.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhao W, Zhang Y, Zhu Y. Circular RNA circbeta-catenin aggravates the malignant phenotype of non-small-cell lung cancer via encoding a peptide. J Clin Lab Anal. 2021;35:e23900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang S, Su T, Tong H, Zhou D, Ma F, Ding J, et al. Circbeta-catenin promotes tumor growth and Warburg effect of gallbladder cancer by regulating STMN1 expression. Cell Death Discov. 2021;7:233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang S, Chao F, Zhang C, Han D, Xu G, Chen G. Circular RNA circPFKP promotes cell proliferation by activating IMPDH2 in prostate cancer. Cancer Lett. 2022;524:109–20.

    Article  CAS  PubMed  Google Scholar 

  17. Wang R, Zhang S, Chen X, Li N, Li J, Jia R, et al. EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol Cancer. 2018;17:166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao J, Jiang Y, Zhang H, Zhou J, Chen L, Li H, et al. The SRSF1/circATP5B/miR-185-5p/HOXB5 feedback loop regulates the proliferation of glioma stem cells via the IL6-mediated JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 2021;40:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou T, Wu L, Ma N, Tang F, Yu Z, Jiang Z, et al. SOX9-activated FARSA-AS1 predetermines cell growth, stemness, and metastasis in colorectal cancer through upregulating FARSA and SOX9. Cell Death Dis. 2020;11:1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim ES, Choi JY, Hwang SJ, Bae IH. Hypermethylation of miR-205-5p by IR governs aggressiveness and metastasis via regulating Bcl-w and Src. Mol Ther Nucleic Acids. 2019;14:450–64.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8:14741.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159:134–47.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL. CircRNA: a novel type of biomarker for cancer. Breast Cancer. 2018;25:1–7.

    Article  PubMed  Google Scholar 

  27. Zhu M, Dang Y, Yang Z, Liu Y, Zhang L, Xu Y, et al. Comprehensive RNA sequencing in Adenoma-cancer transition identified predictive biomarkers and therapeutic targets of human CRC. Mol Ther Nucleic Acids. 2020;20:25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi C-J, Li S-Y, Shen C-H, Pan F-F, Deng L-Q, Fu W-M, et al. Icariside II suppressed tumorigenesis by epigenetically regulating the circβ-catenin-Wnt/β-catenin axis in colorectal cancer. Bioorg Chem. 2022;124:105800.

    Article  CAS  PubMed  Google Scholar 

  29. Ma Z, Han C, Xia W, Wang S, Li X, Fang P, et al. circ5615 functions as a ceRNA to promote colorectal cancer progression by upregulating TNKS. Cell Death Dis. 2020;11:356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang J, Wang H, Wu K, Zhan F, Zeng H. Dysregulated circRNA_100876 contributes to proliferation and metastasis of colorectal cancer by targeting microRNA-516b (miR-516b). Cancer Biol Ther. 2020;21:733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou N, Sun Z, Li N, Ge Y, Zhou J, Han Q, et al. miR‑197 promotes the invasion and migration of colorectal cancer by targeting insulin‑like growth factor‑binding protein 3. Oncol Rep. 2018;40:2710–21.

    CAS  PubMed  Google Scholar 

  32. Wang W, Zhou L, Li Z, Lin G. Circ_0014130 is involved in the drug sensitivity of colorectal cancer through miR-197-3p/PFKFB3 axis. J Gastroenterol Hepatol. 2022;37:908–18.

    Article  CAS  PubMed  Google Scholar 

  33. Wang M, Hu H, Wang Y, Huang Q, Huang R, Chen Y, et al. Long non-coding RNA TUG1 mediates 5-fluorouracil resistance by acting as a ceRNA of miR-197-3p in colorectal cancer. J Cancer. 2019;10:4603–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang T, Li H, Chen T, Ren H, Shi P, Chen M. LncRNA MALAT1 depressed chemo-sensitivity of NSCLC cells through directly functioning on miR-197-3p/p120 Catenin axis. Mol Cells. 2019;42:270–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu L, Cao M, Pu X, Liu B, Wang J. The sponge interaction between circular RNA and microRNA serves as a fast-evolving mechanism that suppresses non-small Cell Lung Cancer (NSCLC) in humans. J Mol Evol. 2022;90:362–74.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Shen Q, He T, Yuan H. Hsa_circ_0002577 promotes endometrial carcinoma progression via regulating miR-197/CTNND1 axis and activating Wnt/beta-catenin pathway. Cell Cycle. 2019;18:1229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reynolds AB, Roesel DJ, Kanner SB, Parsons JT. Transformation-specific tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic variants of the avian cellular src gene. Mol Cell Biol. 1989;9:629–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Park JI, Kim SW, Lyons JP, Ji H, Nguyen TT, Cho K, et al. Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev Cell. 2005;8:843–54.

    Article  PubMed  Google Scholar 

  39. Hernandez-Martinez R, Ramkumar N, Anderson KV. p120-catenin regulates WNT signaling and EMT in the mouse embryo. Proc Natl Acad Sci USA. 2019;116:16872–81.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Casagolda D, Del Valle-Perez B, Valls G, Lugilde E, Vinyoles M, Casado-Vela J, et al. A p120-catenin-CK1epsilon complex regulates Wnt signaling. J Cell Sci. 2010;123:2621–31.

    Article  CAS  PubMed  Google Scholar 

  41. Han L, Li Z, Jiang Y, Jiang Z, Tang L. SNHG29 regulates miR-223-3p/CTNND1 axis to promote glioblastoma progression via Wnt/beta-catenin signaling pathway. Cancer Cell Int. 2019;19:345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamada N, Noguchi S, Mori T, Naoe T, Maruo K, Akao Y. Tumor-suppressive microRNA-145 targets catenin delta-1 to regulate Wnt/beta-catenin signaling in human colon cancer cells. Cancer Lett. 2013;335:332–42.

    Article  CAS  PubMed  Google Scholar 

  43. Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J, et al. eIF4A3 is a novel component of the exon junction complex. RNA. 2004;10:200–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Q, Dong H. EIF4A3-mediated hsa_circ_0088088 promotes the carcinogenesis of breast cancer by sponging miR-135-5p. J Biochem Mol Toxicol. 2021;35:e22909.

    Article  CAS  PubMed  Google Scholar 

  45. Xing W, Zhou PC, Zhang HY, Chen LM, Zhou YM, Cui XF, et al. Circular RNA circ_GLIS2 suppresses hepatocellular carcinoma growth and metastasis. Liver Int. 2022;42:682–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Futian Healthcare Research Project (FTWS2023065), the National Natural Science Foundation of China (No. 82772526) and the Natural Science Foundation of Guangdong Province (2020A1515010961, 2021A1515012111).

Author information

Authors and Affiliations

Authors

Contributions

HL and JZ conceived and designed the whole project and the experiments. LD, CS, SZ, and WL conducted the experiments. YX, YW, WF, WZ, and LD performed data analysis. CS and LD wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Han-Li Lin, Wei Liu or Jin-Fang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

The protocol was approved by Ethics Committee from Sun Yat-sen University approved this study, and patient consent was obtained before the samples were taken. The usage and treatment of animals were approved by Institutional Animal Care and Use Committee (IACUC) of Southern Medical University.

Consent to publish

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, LQ., Shi, CJ., Zhou, ST. et al. EIF4A3-negatively driven circular RNA β-catenin (circβ-catenin) promotes colorectal cancer progression via miR-197-3p/CTNND1 regulatory axis. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02612-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02612-y

Search

Quick links