Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

APC/PIK3CA mutations and β-catenin status predict tankyrase inhibitor sensitivity of patient-derived colorectal cancer cells

Abstract

Background

Aberrant WNT/β-catenin signaling drives carcinogenesis. Tankyrases poly(ADP-ribosyl)ate and destabilize AXINs, β-catenin repressors. Tankyrase inhibitors block WNT/β-catenin signaling and colorectal cancer (CRC) growth. We previously reported that ‘short’ APC mutations, lacking all seven β-catenin-binding 20-amino acid repeats (20-AARs), are potential predictive biomarkers for CRC cell sensitivity to tankyrase inhibitors. Meanwhile, ‘Long’ APC mutations, which possess more than one 20-AAR, do not predict inhibitor–resistant cells. Thus, additional biomarkers are needed to precisely predict the inhibitor sensitivity.

Methods

Using 47 CRC patient-derived cells (PDCs), we examined correlations between the sensitivity to tankyrase inhibitors (G007-LK and RK-582), driver mutations, and the expressions of signaling factors. NOD.CB17-Prkdcscid/J and BALB/c-nu/nu xenograft mice were treated with RK-582.

Results

Short APC mutant CRC cells exhibited high/intermediate sensitivities to tankyrase inhibitors in vitro and in vivo. Active β-catenin levels correlated with inhibitor sensitivity in both short and long APC mutant PDCs. PIK3CA mutations, but not KRAS/BRAF mutations, were more frequent in inhibitor–resistant PDCs. Some wild-type APC PDCs showed inhibitor sensitivity in a β-catenin-independent manner.

Conclusions

APC/PIK3CA mutations and β-catenin predict the sensitivity of APC-mutated CRC PDCs to tankyrase inhibitors. These observations may help inform the strategy of patient selection in future clinical trials of tankyrase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Colorectal cancer (CRC) patient-derived cells (PDCs) with ‘short’ APC mutations are sensitive to tankyrase inhibitors.
Fig. 2: Active β-catenin level marks tankyrase inhibitor-sensitive cells in the CRC PDCs with ‘long’ APC mutations.
Fig. 3: Tankyrase inhibitor sensitivity in the CRC PDCs correlates with β-catenin activation status in the original tumor tissues.
Fig. 4: Frequency of oncogenic driver mutations in the tankyrase inhibitor–responsive and –resistant CRC PDCs with APC mutations.
Fig. 5: Sensitivity of APC-wild CRC PDCs to tankyrase inhibitors and related molecular pathways.

Similar content being viewed by others

Data availability

The gene expression data have been deposited in the Gene Expression Omnibus (accession numbers: GSE217758, GSE232209). Other data generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nielsen DL, Palshof JA, Larsen FO, Jensen BV, Pfeiffer P. A systematic review of salvage therapy to patients with metastatic colorectal cancer previously treated with fluorouracil, oxaliplatin and irinotecan +/− targeted therapy. Cancer Treat Rev. 2014;40:701–15.

    Article  CAS  PubMed  Google Scholar 

  2. Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1:55–67.

    Article  CAS  PubMed  Google Scholar 

  3. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665–9.

    Article  CAS  PubMed  Google Scholar 

  4. Daniloski Z, Bisht KK, McStay B, Smith S. Resolution of human ribosomal DNA occurs in anaphase, dependent on tankyrase 1, condensin II, and topoisomerase IIalpha. Genes Dev. 2019;33:276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ohishi T, Yoshida H, Katori M, Migita T, Muramatsu Y, Miyake M, et al. Tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton rearrangement and cancer cell invasion. Cancer Res. 2017;77:2328–38.

    Article  CAS  PubMed  Google Scholar 

  6. Smith S, Giriat I, Schmitt A, de Lange T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 1998;282:1484–7.

    Article  CAS  PubMed  Google Scholar 

  7. Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, et al. Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS One. 2011;6:e22595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009;461:614–20.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol. 2011;13:623–9.

    Article  CAS  PubMed  Google Scholar 

  10. Riffell JL, Lord CJ, Ashworth A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov. 2012;11:923–36.

    Article  CAS  PubMed  Google Scholar 

  11. Seimiya H. Crossroads of telomere biology and anticancer drug discovery. Cancer Sci. 2020;111:3089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5:100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 2013;73:3132–44.

    Article  CAS  PubMed  Google Scholar 

  14. Quackenbush KS, Bagby S, Tai WM, Messersmith WA, Schreiber A, Greene J, et al. The novel tankyrase inhibitor (AZ1366) enhances irinotecan activity in tumors that exhibit elevated tankyrase and irinotecan resistance. Oncotarget 2016;7:28273–85.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mizutani A, Yashiroda Y, Muramatsu Y, Yoshida H, Chikada T, Tsumura T, et al. RK-287107, a potent and specific tankyrase inhibitor, blocks colorectal cancer cell growth in a preclinical model. Cancer Sci. 2018;109:4003–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shirai F, Mizutani A, Yashiroda Y, Tsumura T, Kano Y, Muramatsu Y, et al. Design and discovery of an orally efficacious spiroindolinone-based tankyrase inhibitor for the treatment of colon cancer. J Med Chem. 2020;63:4183–204.

    Article  CAS  PubMed  Google Scholar 

  17. Shirai F, Tsumura T, Yashiroda Y, Yuki H, Niwa H, Sato S, et al. Discovery of novel spiroindoline derivatives as selective tankyrase inhibitors. J Med Chem. 2019;62:3407–27.

    Article  CAS  PubMed  Google Scholar 

  18. Zhong Y, Katavolos P, Nguyen T, Lau T, Boggs J, Sambrone A, et al. Tankyrase inhibition causes reversible intestinal toxicity in mice with a therapeutic index <1. Toxicol Pathol. 2016;44:267–78.

    Article  CAS  PubMed  Google Scholar 

  19. Kim DY, Kwon YJ, Seo WY, Kim UI, Ahn S, Choi SM, et al. Tankyrase-selective inhibitor STP1002 shows preclinical antitumour efficacy without on-target toxicity in the gastrointestinal tract. Eur J Cancer. 2022;173:41–51.

    Article  CAS  PubMed  Google Scholar 

  20. Brinch SA, Amundsen-Isaksen E, Espada S, Hammarstrom C, Aizenshtadt A, Olsen PA, et al. The tankyrase inhibitor OM-153 demonstrates antitumor efficacy and a therapeutic window in mouse models. Cancer Res Commun. 2022;2:233–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanaka N, Mashima T, Mizutani A, Sato A, Aoyama A, Gong B, et al. APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer. Mol Cancer Ther. 2017;16:752–62.

    Article  CAS  PubMed  Google Scholar 

  22. Jang MK, Mashima T, Seimiya H. Tankyrase inhibitors target colorectal cancer stem cells via AXIN-dependent downregulation of c-KIT tyrosine kinase. Mol Cancer Ther. 2020;19:765–76.

    Article  CAS  PubMed  Google Scholar 

  23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013;1303:3997v2.

    Google Scholar 

  25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinforma. 2013;43:11.10.1-11.10.33.

    Google Scholar 

  30. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mashima T, Taneda Y, Jang MK, Mizutani A, Muramatsu Y, Yoshida H, et al. mTOR signaling mediates resistance to tankyrase inhibitors in Wnt-driven colorectal cancer. Oncotarget 2017;8:47902–15.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Novak A, Dedhar S. Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci. 1999;56:523–37.

    Article  CAS  PubMed  Google Scholar 

  33. Deng X, Hamamoto R, Vougiouklakis T, Wang R, Yoshioka Y, Suzuki T, et al. Critical roles of SMYD2-mediated beta-catenin methylation for nuclear translocation and activation of Wnt signaling. Oncotarget 2017;8:55837–47.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schoumacher M, Hurov KE, Lehar J, Yan-Neale Y, Mishina Y, Sonkin D, et al. Inhibiting Tankyrases sensitizes KRAS-mutant cancer cells to MEK inhibitors via FGFR2 feedback signaling. Cancer Res. 2014;74:3294–305.

    Article  CAS  PubMed  Google Scholar 

  35. Mygland L, Brinch SA, Strand MF, Olsen PA, Aizenshtadt A, Lund K, et al. Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. iScience 2021;24:102807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Xu X, Maglic D, Dill MT, Mojumdar K, Ng PK, et al. Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 2018;25:1304–17.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S, et al. beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med. 2012;18:892–901.

    Article  CAS  PubMed  Google Scholar 

  38. Moser AR, Luongo C, Gould KA, McNeley MK, Shoemaker AR, Dove WF. ApcMin: a mouse model for intestinal and mammary tumorigenesis. Eur J Cancer. 1995;31A:1061–4.

    Article  CAS  PubMed  Google Scholar 

  39. Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR, et al. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res. 2012;72:2822–32.

    Article  CAS  PubMed  Google Scholar 

  40. Schatoff EM, Goswami S, Zafra MP, Foronda M, Shusterman M, Leach BI, et al. Distinct colorectal cancer-associated APC mutations dictate response to tankyrase inhibition. Cancer Discov 2019;9:1358–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Solberg NT, Melheim M, Strand MF, Olsen PA, Krauss S. MEK inhibition induces canonical WNT signaling through YAP in KRAS mutated HCT-15 cells, and a cancer preventive FOXO3/FOXM1 ratio in combination with TNKS inhibition. Cancers (Basel). 2019;11:164.

  42. Jung M, Kim W, Cho JW, Yang WH, Chung IK. Poly-ADP ribosylation of p21 by tankyrases promotes p21 degradation and regulates cell cycle progression. Biochem J. 2022;479:2379–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Noritaka Tanaka, Yuki Shimizu, Bo Gong, Yuki Takahashi, Tomoko Oh-hara, Motoyoshi Iwakoshi, Shuhei Ishii, and Yuting Zhou for technical and experimental support and members of Seimiya laboratory for invaluable discussion. We thank Gabrielle White Wolf, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science [Scientific Research (B) 19H03523 and622H02931 to Hiroyuki Seimiya and Scientific Research (C) 18K07337 to Tetsuo Mashima], Project for Cancer Research and Therapeutic Evolution (167708578 to H. Seimiya), Practical Research for Innovative Cancer Control (19090105 and 22580621 to H. Seimiya), Project for Promotion of Cancer Research and Therapeutic Evolution (23810633 to T. Mashima), Japan Agency for Medical Research and Development, and grants from Nippon Foundation (to H. Seimiya) and Takeda Science Foundation (to H. Seimiya).

Author information

Authors and Affiliations

Authors

Contributions

MC, TM, TO: conceptualization, methodology, validation, formal analysis, investigation; writing original draft, review & editing, visualization. YM: methodology, validation, investigation, resources, writing original draft, review & editing, visualization. YS: software, investigation, resources, data curation, writing original draft. MT: validation, formal analysis, investigation, resources, writing original draft. NK, AN, SI, XY, M-KJ, AM: methodology, investigation. SM: methodology, validation, formal analysis, investigation, review & editing, visualization. KM: investigation, resources. MS: investigation, resources. AS: validation, investigation, visualization. HY: methodology, validation, investigation; visualization. KT: resources. KY: conceptualization, resources, review & editing. FS, SN: resources, review & editing. RK: conceptualization, investigation, resources, data curation, review & editing. HS: conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing original draft, review & editing, visualization, supervision, project administration, funding acquisition. All the authors drafted or revised the manuscript, approved the final version, and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Hiroyuki Seimiya.

Ethics declarations

Competing interests

HS received research grants from the Nippon Foundation and Takeda Science Foundation and holds a patent of RK-582 and related chemical compounds. FS holds a patent of RK-582 and related chemical compounds. RK received a research grant from TOPPAN. The other authors declare no competing interests.

Ethics approval and consent to participate

This study was performed in accordance with the Declaration of Helsinki under approval from the Institutional Review Board of Japanese Foundation for Cancer Research (JFCR) (Tokyo, Japan) and the written informed consent of patients. Animal procedures were carried out, following national laws and policies (Guidelines for Proper Conduct of Animal Experiments, Science Council of Japan, 2006) in the animal experiment room at JFCR according to protocols approved by the JFCR Animal Care and Use Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Mashima, T., Oishi, T. et al. APC/PIK3CA mutations and β-catenin status predict tankyrase inhibitor sensitivity of patient-derived colorectal cancer cells. Br J Cancer 130, 151–162 (2024). https://doi.org/10.1038/s41416-023-02484-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02484-8

Search

Quick links