Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pulmonary function as a continuum of risk: critical care utilization and survival after allogeneic hematopoietic stem cell transplantation - a multicenter cohort study

Abstract

Abnormal pre-transplant pulmonary function tests (PFTs) are associated with reduced survival after allogeneic HCT. Existing scoring systems consider risk dichotomously, attributing risk only to those with abnormal lung function. In a multicenter cohort of 1717 allo-HCT recipients, we examined the association between pre-transplant PFT measures and need for ICU admission (120d), frequency of mechanical ventilation (120d) and overall survival (5 y). Predictive models were developed and validated using Cox proportional hazards, incorporating age, FEV1 (forced expiratory volume in 1-second) and diffusing capacity (DLCO). In univariate analysis, hazard ratios for each outcome (95% CI) were: mechanical ventilation (FEV1: 0.60 [0.52–0.69], DLCO: 0.69 [0.61–0.77], p < 0.001), ICU admission (FEV1: 0.74 [0.67–0.82], DLCO: 0.79 [0.72–0.86], p < 0.001) and overall survival (FEV1: HR 0.87 [0.81–0.94], DLCO: 0.83 [0.77–0.89], p < 0.001). A multivariable Cox model was developed and compared to the HCT-CI Pulmonary score in a validation cohort. This model was better at predicting need for ICU admission and mechanical ventilation, while both models predicted overall survival (p < 0.001). In conclusion, the risk conferred by pre-transplant pulmonary function should be considered in a continuous rather than dichotomous manner. A more granular prognostication system can better inform risk of critical care utilization in the early post-HCT period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cox proportional hazards modeling of risk of overall survival, mechanical ventilation (within 120 days) and need for intensive care unit admission (within 120 days) for each of the three pulmonary function metrics examined: forced expiratory volume in 1-second, forced vital capacity and diffusing capacity.
Fig. 2: Histogram of hazard ratios for a Cox Model incorporating forced expiratory volume in 1-second, diffusing capacity, and age.
Fig. 3
Fig. 4: Performance of the Revised Pulmonary HCT model in the Test/Validation Cohort.
Fig. 5: Performance of the HCT-CI Pulmonary Score in the Test/Validation Cohort.
Fig. 6: Sensitivity analysis to illustrate the potential additive value of the Revised Pulmonary HCT model.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, but restrictions apply given stipulations outlined by the Institutional Review Board approval of this study (Mayo Clinic Rochester, Minnesota, number 13-002869). While unrestricted distribution of patient-level information is restricted, the code used to develop the model is freely available at: https://github.com/hemangyadav/AlloHCT/. We have provided the code used so other centers can utilize our work to examine their own data and derive risk equations specific to their patient population and healthcare practice.

References

  1. Stanojevic S, Kaminsky DA, Miller MR, Thompson B, Aliverti A, Barjaktarevic I, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2022;60. https://doi.org/10.1183/13993003.01499-2021.

  2. Bowerman C, Bhakta NR, Brazzale D, Cooper BR, Cooper J, Gochicoa-Rangel L, et al. A race-neutral approach to the interpretation of lung function measurements. Am J Respir Crit Care Med. 2023;207:768–74. https://doi.org/10.1164/rccm.202205-0963OC.

    Article  PubMed  Google Scholar 

  3. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40:1324–43. https://doi.org/10.1183/09031936.00080312.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Swanney MP, Ruppel G, Enright PL, Pedersen OF, Crapo RO, Miller MR, et al. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction. Thorax. 2008;63:1046–51. https://doi.org/10.1136/thx.2008.098483.

    Article  CAS  PubMed  Google Scholar 

  5. Miller MR, Quanjer PH, Swanney MP, Ruppel G, Enright PL. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest. 2011;139:52–59. https://doi.org/10.1378/chest.10-0189.

    Article  PubMed  Google Scholar 

  6. Afessa B, Abdulai RM, Kremers WK, Hogan WJ, Litzow MR, Peters SG. Risk factors and outcome of pulmonary complications after autologous hematopoietic stem cell transplant. Chest. 2012;141:442–50. https://doi.org/10.1378/chest.10-2889.

    Article  PubMed  Google Scholar 

  7. Yadav H, Nolan ME, Bohman JK, Cartin-Ceba R, Peters SG, Hogan WJ, et al. Epidemiology of acute respiratory distress syndrome following hematopoietic stem cell transplantation. Crit Care Med. 2016;44:1082–90. https://doi.org/10.1097/CCM.0000000000001617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herasevich S, Frank RD, Bo H, Alkhateeb H, Hogan WJ, Gajic O, et al. Pretransplant risk factors can predict development of acute respiratory distress syndrome after hematopoietic stem cell transplantation. Ann Am Thorac Soc. 2021;18:1004–12. https://doi.org/10.1513/AnnalsATS.202004-336OC.

    Article  PubMed  Google Scholar 

  9. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. Jama. 2016;315:788–800. https://doi.org/10.1001/jama.2016.0291.

    Article  CAS  PubMed  Google Scholar 

  10. Rios F, Iscar T, Cardinal-Fernandez P. What every intensivist should know about acute respiratory distress syndrome and diffuse alveolar damage. Rev Brasileira de Ter Intensiv. 2017;29:354–63. https://doi.org/10.5935/0103-507x.20170044.

    Article  Google Scholar 

  11. Efrati O, Toren A, Duskin H, Modan-Moses D, Bielorai B, Goldstein G, et al. Pulmonary function studies in children treated by chemoradiotherapy and stem cell transplantation. Pediatr Blood Cancer. 2008;51:684–8. https://doi.org/10.1002/pbc.21722.

    Article  PubMed  Google Scholar 

  12. Wenger DS, Triplette M, Crothers K, Cheng GS, Hill JA, Milano F, et al. Incidence, risk factors, and outcomes of idiopathic pneumonia syndrome after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transpl. 2020;26:413–20. https://doi.org/10.1016/j.bbmt.2019.09.034.

    Article  Google Scholar 

  13. Crawford SW, Fisher L. Predictive value of pulmonary function tests before marrow transplantation. Chest. 1992;101:1257–64. https://doi.org/10.1378/chest.101.5.1257.

    Article  CAS  PubMed  Google Scholar 

  14. Ghalie R, Szidon JP, Thompson L, Nawas YN, Dolce A, Kaizer H. Evaluation of pulmonary complications after bone marrow transplantation: the role of pretransplant pulmonary function tests. Bone Marrow Transpl. 1992; 10:359−65.

  15. Ho VT, Weller E, Lee SJ, Alyea EP, Antin JH, Soiffer RJ. Prognostic factors for early severe pulmonary complications after hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2001;7:223–9. https://doi.org/10.1053/bbmt.2001.v7.pm11349809.

    Article  CAS  Google Scholar 

  16. Suarez EU. Hottest topics in hematopoietic stem cell transplantation: a summary from the 8th International Transplant and Cellular Therapy Course. Clin Hematol Int. 2023;5:89034. https://doi.org/10.46989/001c.89034.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106:2912–9. https://doi.org/10.1182/blood-2005-05-2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Veeraputhiran M, Yang L, Sundaram V, Arai S, Lowsky R, Miklos D, et al. Validation of the hematopoietic cell transplantation-specific comorbidity index in nonmyeloablative allogeneic stem cell transplantation. Biol Blood Marrow Transpl. 2017;23:1744–8. https://doi.org/10.1016/j.bbmt.2017.06.005.

    Article  Google Scholar 

  19. Raimondi R, Tosetto A, Oneto R, Cavazzina R, Rodeghiero F, Bacigalupo A, et al. Validation of the hematopoietic cell transplantation-specific comorbidity index: a prospective, multicenter GITMO study. Blood. 2012;120:1327–33. https://doi.org/10.1182/blood-2012-03-414573.

    Article  CAS  PubMed  Google Scholar 

  20. Sorror ML, Sandmaier BM, Storer BE, Franke GN, Laport GG, Chauncey TR, et al. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies. Jama. 2011;306:1874–83. https://doi.org/10.1001/jama.2011.1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller MR, Pedersen OF, Lange P, Vestbo J. Improved survival prediction from lung function data in a large population sample. Respir Med. 2009;103:442–8. https://doi.org/10.1016/j.rmed.2008.09.016.

    Article  PubMed  Google Scholar 

  22. Lange P, Nyboe J, Appleyard M, Jensen G, Schnohr P. Spirometric findings and mortality in never-smokers. J Clin Epidemiol. 1990;43:867–73. https://doi.org/10.1016/0895-4356(90)90070-6.

    Article  CAS  PubMed  Google Scholar 

  23. Chinn S, Gislason T, Aspelund T, Gudnason V. Optimum expression of adult lung function based on all-cause mortality: results from the Reykjavik study. Respir Med. 2007;101:601–9. https://doi.org/10.1016/j.rmed.2006.06.009.

    Article  CAS  PubMed  Google Scholar 

  24. Sheshadri A, Makhnoon S, Alousi AM, Bashoura L, Andrade R, Miller CJ, et al. Home-based spirometry telemonitoring after allogeneic hematopoietic cell transplantation: mixed methods evaluation of acceptability and usability. JMIR Form Res. 2022;6:e29393. https://doi.org/10.2196/29393.

    Article  PubMed  PubMed Central  Google Scholar 

  25. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1453–7. https://doi.org/10.1016/S0140-6736(07)61602-X.

    Article  Google Scholar 

  26. Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL, et al. Standardization of Spirometry 2019 update. an official american thoracic society and european respiratory society technical statement. Am J Respir Crit Care Med. 2019;200:e70–88. https://doi.org/10.1164/rccm.201908-1590ST.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP, Brusasco V, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26:720–35. https://doi.org/10.1183/09031936.05.00034905.

    Article  CAS  PubMed  Google Scholar 

  28. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38. https://doi.org/10.1183/09031936.05.00034805.

    Article  CAS  PubMed  Google Scholar 

  29. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26:511–22. https://doi.org/10.1183/09031936.05.00035005.

    Article  CAS  PubMed  Google Scholar 

  30. Stanojevic S, Graham BL, Cooper BG, Thompson BR, Carter KW, Francis RW et al. Official ERS technical standards: global lung function initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur Respir J. 2017;50. https://doi.org/10.1183/13993003.00010-2017.

  31. Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, Kendrick A et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J. 2017;49. https://doi.org/10.1183/13993003.00016-2016.

  32. Quanjer PH, Stanojevic S, Cole TJ, Stocks J. Quanjer GLI-2012 regression equation and lookup tables. global lung function initiative. 2012. https://www.ers-education.org/lr/show-details/?idP=138978.

  33. Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16:1141–54. https://doi.org/10.1214/aos/1176350951.

    Article  ADS  MathSciNet  Google Scholar 

  34. Jules-Elysee K, Stover DE, Yahalom J, White DA, Gulati SC. Pulmonary complications in lymphoma patients treated with high-dose therapy autologous bone marrow transplantation. Am Rev Respir Dis. 1992;146:485–91. https://doi.org/10.1164/ajrccm/146.2.485.

    Article  CAS  PubMed  Google Scholar 

  35. Parimon T, Madtes DK, Au DH, Clark JG, Chien JW. Pretransplant lung function, respiratory failure, and mortality after stem cell transplantation. Am J Respir Crit Care Med. 2005;172:384–90. https://doi.org/10.1164/rccm.200502-212OC.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pedone C, Scarlata S, Scichilone N, Forastiere F, Bellia V, Antonelli-Incalzi R. Alternative ways of expressing FEV1 and mortality in elderly people with and without COPD. Eur Respir J. 2013;41:800–5. https://doi.org/10.1183/09031936.00008812.

    Article  PubMed  Google Scholar 

  37. Patel H, Hassell A, Cyriacks B, Fisher B, Tonelli W, Davis C. Building a real-time remote patient monitoring patient safety program for COVID-19 patients. Am J Med Qual. 2022;37:342–7. https://doi.org/10.1097/JMQ.0000000000000046.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Astashchanka A, Ryan J, Lin E, Nokes B, Jamieson C, Kligerman S, et al. Pulmonary complications in hematopoietic stem cell transplant Recipients-A clinician primer. J Clin Med. 2021;10. https://doi.org/10.3390/jcm10153227

  39. Chang E, Iukuridze A, Echevarria M, Teh JB, Chanson D, Ky B, et al. Feasibility and acceptability of using a telehealth platform to monitor cardiovascular risk factors in hematopoietic cell transplantation survivors at risk for cardiovascular disease. Biol Blood Marrow Transpl. 2020;26:1233–7. https://doi.org/10.1016/j.bbmt.2020.02.027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Grant Number K23HL151671 (HY) from the National Heart, Lung and Blood Institute of the National Institute of Health. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Funding

NIH/NHLBI Grant Number K23HL151671 (recipient: Hemang Yadav).

Author information

Authors and Affiliations

Authors

Contributions

HY conceived the work leading to the submission, acquired data, interpreted data, analyzed results and drafted the manuscript. SH, ZZ and BW acquired data and revised the manuscript. MHT, WH, AN and OG helped with project design and data interpretation and revised the manuscript. PJS helped with data interpretation and revised the manuscript. All authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Hemang Yadav.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, H., Herasevich, S., Zhang, Z. et al. Pulmonary function as a continuum of risk: critical care utilization and survival after allogeneic hematopoietic stem cell transplantation - a multicenter cohort study. Bone Marrow Transplant (2024). https://doi.org/10.1038/s41409-024-02265-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41409-024-02265-8

Search

Quick links