Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-transplantation cyclophosphamide for chimerism-based tolerance

Abstract

High-dose cyclophosphamide given post-transplant (PTCy) successfully enables tolerance induction in HLA-mismatched related blood or marrow transplantation (haploBMT) manifested by low rates of graft failure, severe acute graft-versus-host disease (GVHD), and chronic GVHD. When proceeded by nonmyeloablative conditioning, PTCy has also been associated with a low incidence of nonrelapse mortality. The safety of this platform has garnered interest in expanding its use to non-malignant indications for allogeneic blood or marrow transplantation (alloBMT). After success in a preliminary Phase I/II trial, use of a PTCy-based haploBMT platform is now being explored in a large Blood and Marrow Transplant Clinical Trials Network (BMT CTN) study for sickle cell disease. These emerging data in patients with hemoglobinopathies provided the rationale for exploring the use of PTCy in combined solid organ and BM transplantation as a means of tolerance induction through donor hematopoietic chimerism with a goal to obviate the need for a lifetime of immunosuppression. Several case reports, series, and small clinical trials have now been published of combined solid organ and alloBMT in patients with hematologic malignancies who had organ failure that would have been preclusive of alloBMT in the absence of solid organ transplantation. Here we will review the pre-clinical and clinical studies supporting the use of PTCy for chimerism-based tolerance induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Strober S. Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants. Blood. 2016;127:1539–43.

    Article  CAS  Google Scholar 

  2. Mahr B, Granofszky N, Muckenhuber M, Wekerle T. Transplantation tolerance through hematopoietic chimerism: progress and challenges for clinical translation. Front Immunol. 2017;8:1762.

    Article  Google Scholar 

  3. Sachs DH, Sykes M, Kawai T, Cosimi AB. Immuno-intervention for the induction of transplantation tolerance through mixed chimerism. Semin Immunol. 2011;23:165–73.

    Article  Google Scholar 

  4. Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50.

    Article  CAS  Google Scholar 

  5. Brunstein CG, Fuchs EJ, Carter SL, Karanes C, Costa LJ, Wu J et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118:282–8.

    Article  CAS  Google Scholar 

  6. McCurdy SR, Kanakry JA, Showel MM,  Tsai HL, Bolaños-Meade J, Rosner GL et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125:3024–31.

    Article  CAS  Google Scholar 

  7. Luznik L, Jalla S, Engstrom LW, Iannone R, Fuchs EJ. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001;98:3456–64.

    Article  CAS  Google Scholar 

  8. Luznik L, Engstrom LW, Iannone R, Fuchs EJ. Posttransplantation cyclophosphamide facilitates engraftment of major histocompatibility complex-identical allogeneic marrow in mice conditioned with low-dose total body irradiation. Biol Blood Marrow Transplant. 2002;8:131–8.

    Article  CAS  Google Scholar 

  9. Luznik L, O’Donnell PV, Fuchs EJ. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol. 2012;39:683–93.

    Article  CAS  Google Scholar 

  10. Mayumi H, Good RA. Long-lasting skin allograft tolerance in adult mice induced across fully allogeneic (multimajor H-2 plus multiminor histocompatibility) antigen barriers by a tolerance-inducing method using cyclophosphamide. J Exp Med. 1989;169:213–38.

    Article  CAS  Google Scholar 

  11. Owens AH Jr., Santos GW. The effect of cytotoxic drugs on graft-versus-host disease in mice. Transplantation. 1971;11:378–82.

    Article  CAS  Google Scholar 

  12. Yolcu ES, Shirwan H, Askenasy N. Mechanisms of Tolerance induction by hematopoietic chimerism: the immune perspective. Stem Cells Transl Med. 2017;6:700–12.

    Article  Google Scholar 

  13. Roberto A, Castagna L, Zanon V, Bramanti S, Crocchiolo R, McLaren JE et al. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood. 2015;125:2855–64.

    Article  CAS  Google Scholar 

  14. Cieri N, Oliveira G, Greco R, Forcato M, Taccioli C, Cianciotti B et al. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood. 2015;125:2865–74.

    Article  CAS  Google Scholar 

  15. Ross D, Jones M, Komanduri K, Levy RB. Antigen and lymphopenia-driven donor T cells are differentially diminished by post-transplantation administration of cyclophosphamide after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19:1430–8.

    Article  CAS  Google Scholar 

  16. Kanakry CG, Ganguly S, Zahurak M, Bolaños-Meade J, Thoburn C, Perkins B et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5:211ra157.

    Article  Google Scholar 

  17. Ganguly S, Ross DB, Panoskaltsis-Mortari A, Kanakry CG, Blazer BR, Levy RB et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood. 2014;124:2131–41.

    Article  CAS  Google Scholar 

  18. McCurdy SR, Kanakry CG, Tsai HL, Kasamon YL, Showel MM, Bolaños-Meade J et al. Grade II acute graft-versus-host disease and higher nucleated cell graft dose improve progression-free survival after HLA-haploidentical transplant with post-transplant cyclophosphamide. Biol Blood Marrow Transplant. 2018;24:343–52.

    Article  CAS  Google Scholar 

  19. Kanakry CG, Coffey DG, Towlerton AM, Vulic A, Storer BE, Chou J et al. Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide. JCI Insight. 2016;1:e86252.

    Article  Google Scholar 

  20. Kasamon YL, Luznik L, Leffell MS, Kowalski J, Tsai HL, Bolaños-Meade J et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant. 2010;16:482–9.

    Article  CAS  Google Scholar 

  21. McCurdy SR, Kasamon YL, Kanakry CG, Bolaños-Meade J, Tsai HL, Showel MM et al. Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica. 2017;102:391–400.

    Article  CAS  Google Scholar 

  22. Ciurea SO, Zhang MJ, Bacigalupo AA, Bashey A, Appelbaum FR, Aljitawi OS et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40.

    Article  CAS  Google Scholar 

  23. Kanakry CG, O’Donnell PV, Furlong T, de Lima MJ, Wei W, Medeot M et al. Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation using myeloablative busulfan and fludarabine conditioning. J Clin Oncol. 2014;32:3497–505.

    Article  CAS  Google Scholar 

  24. Bashey A, Zhang MJ, McCurdy SR, St Martin A, Argall T, Anasetti C et al. Mobilized peripheral blood stem cells versus unstimulated bone marrow as a graft source for T-cell-replete haploidentical donor transplantation using post-transplant cyclophosphamide. J Clin Oncol. 2017;35:3002–9.

    Article  CAS  Google Scholar 

  25. Kasamon YL, Fuchs EJ, Zahurak M, Rosner GL, Symons HJ, Gladstone DE et al. Shortened-duration tacrolimus after nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant. 2018;24:1022–8.

    Article  CAS  Google Scholar 

  26. Kanakry CG, Bolaños-Meade J, Kasamon YL, Zahurak M, Durakovic N, Furlong T et al. Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation cyclophosphamide. Blood. 2017;129:1389–93.

    Article  CAS  Google Scholar 

  27. Kasamon YL, Ambinder RF, Fuchs EJ, Zahurak M, Rosner GL, Bolaños-Meade J et al. Prospective study of nonmyeloablative, HLA-mismatched unrelated BMT with high-dose posttransplantation cyclophosphamide. Blood. Adv 2017;1:288–92.

    Article  CAS  Google Scholar 

  28. Pasquet L, Douet JY, Sparwasser T, Romagnoli P, van Meerwijk JP. Long-term prevention of chronic allograft rejection by regulatory T-cell immunotherapy involves host Foxp3-expressing T cells. Blood. 2013;121:4303–10.

    Article  CAS  Google Scholar 

  29. Miyajima M, Chase CM, Alessandrini A, Farkash EA, Della Pelle P, Benichou G et al. Early acceptance of renal allografts in mice is dependent on foxp3(+) cells. Am J Pathol. 2011;178:1635–45.

    Article  CAS  Google Scholar 

  30. Dodd OJ, Ganguly S, Vulic A, Panoskaltsis-Mortari A, McDyer JF, Luznik L. Induction of major histocompatibility complex-mismatched mouse lung allograft acceptance with combined donor bone marrow: lung transplant using a 12-hour nonmyeloablative conditioning regimen. Transplantation. 2016;100:e140–e146.

    Article  Google Scholar 

  31. Kasamon YL, Bolaños-Meade J, Prince GT, Tsai HL, McCurdy SR, Kanakry JA et al. Outcomes of nonmyeloablative hla-haploidentical blood or marrow transplantation with high-dose post-transplantation cyclophosphamide in older adults. J Clin Oncol 2015;33:3152–61.

    Article  CAS  Google Scholar 

  32. Spitzer TR, Sykes M, Tolkoff-Rubin N, Kawai T, McAfee SL, Dey BR et al. Long-term follow-up of recipients of combined human leukocyte antigen-matched bone marrow and kidney transplantation for multiple myeloma with end-stage renal disease. Transplantation. 2011;91:672–6.

    Article  CAS  Google Scholar 

  33. Brodsky RA, Luznik L, Bolaños-Meade J, Leffell MS, Jones RJ, Fuchs EJ. Reduced intensity HLA-haploidentical BMT with post transplantation cyclophosphamide in nonmalignant hematologic diseases. Bone Marrow Transplant. 2008;42:523–7.

    Article  CAS  Google Scholar 

  34. Bolaños-Meade J, Fuchs EJ, Luznik L, Lanzkron SM, Gamper CJ, Jones RJ et al. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood. 2012;120:4285–91.

    Article  CAS  Google Scholar 

  35. Chen YB, Kawai T, Spitzer TR. Combined bone marrow and kidney transplantation for the induction of specific tolerance. Adv Hematol. 2016;2016:6471901.

    PubMed  PubMed Central  Google Scholar 

  36. Leventhal J, Abecassis M, Miller J, Gallon L, Ravindra K, Tollerud DJ et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci Transl Med. 2012;4:124ra128.

    Article  Google Scholar 

  37. Leventhal J, Abecassis M, Miller J, Gallon L, Tollerud D, Elliott M et al. Tolerance induction in HLA disparate living donor kidney transplantation by donor stem cell infusion: durable chimerism predicts outcome. Transplantation. 2013;95:169–76.

    Article  Google Scholar 

  38. Leventhal JR, Ildstad ST. Tolerance induction in HLA disparate living donor kidney transplantation by facilitating cell-enriched donor stem cell Infusion: the importance of durable chimerism. Hum Immunol. 2018;79:272–6.

    Article  Google Scholar 

Download references

Funding

Publication of this supplement was sponsored by Gilead Sciences Europe Ltd, Cell Source, Inc., The Chorafas Institute for Scientific Exchange of the Weizmann Institute of Science, Kiadis Pharma, Miltenyi Biotec, Celgene, Centro Servizi Congressuali, Almog Diagnostic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon R. McCurdy.

Ethics declarations

Conflict of interest

SRM received grant support from American Cancer Society Institutional Research Grant (ACS IRG) and served as PI for 129784-IRG-16-188-38-IRG. LL has received consulting fees from Pharmacyclics and Abbivie, lecture fees from Merck, grant support from Gennetech, and receives patent royalties on alloMILs (WindMill Therapheutics).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCurdy, S.R., Luznik, L. Post-transplantation cyclophosphamide for chimerism-based tolerance. Bone Marrow Transplant 54 (Suppl 2), 769–774 (2019). https://doi.org/10.1038/s41409-019-0615-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0615-0

This article is cited by

Search

Quick links