Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Colon-targeted S100A8/A9-specific peptide systems ameliorate colitis and colitis-associated colorectal cancer in mouse models

Abstract

The link between chronic inflammation and cancer development is well acknowledged. Inflammatory bowel disease including ulcerative colitis and Crohn’s disease frequently promotes colon cancer development. Thus, control of intestinal inflammation is a therapeutic strategy to prevent and manage colitis-associated colorectal cancer (CRC). Recently, gut mucosal damage-associated molecular patterns S100A8 and S100A9, acting via interactions with their pattern recognition receptors (PRRs), especially TLR4 and RAGE, have emerged as key players in the pathogenesis of colonic inflammation. We found elevated serum levels of S100A8 and S100A9 in both colitis and colitis-associated CRC mouse models along with significant increases in their binding with PRR, TLR4, and RAGE. In this study we developed a dual PRR-inhibiting peptide system (rCT-S100A8/A9) that consisted of TLR4- and RAGE-inhibiting motifs derived from S100A8 and S100A9, and conjugated with a CT peptide (TWYKIAFQRNRK) for colon-specific delivery. In human monocyte THP-1 and mouse BMDMs, S100A8/A9-derived peptide comprising TLR4- and RAGE-interacting motif (0.01, 0.1, 1 μM) dose-dependently inhibited the binding of S100 to TLR4 or RAGE, and effectively inhibited NLRP3 inflammasome activation. We demonstrated that rCT-S100A8/A9 had appropriate drug-like properties including in vitro stabilities and PK properties as well as pharmacological activities. In mouse models of DSS-induced acute and chronic colitis, injection of rCT-S100A8/A9 (50 μg·kg-1·d-1, i.p. for certain consecutive days) significantly increased the survival rates and alleviated the pathological injuries of the colon. In AOM/DSS-induced colitis-associated colorectal cancer (CAC) mouse model, injection of rCT-S100A8/A9 (50 μg·kg-1·d-1, i.p.) increased the body weight, decreased tumor burden in the distal colon, and significantly alleviated histological colonic damage. In mice bearing oxaliplatin-resistant CRC xenografts, injection of rCT-S100A8/A9 (20 μg/kg, i.p., every 3 days for 24–30 days) significantly inhibited the tumor growth with reduced EMT-associated markers in tumor tissues. Our results demonstrate that targeting the S100-PRR axis improves colonic inflammation and thus highlight this axis as a potential therapeutic target for colitis and CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interaction between S100A8 or A9 and TLR4 or RAGE is increased in inflammation-related colon disease in mice.
Fig. 2: Discovery and design of S100A8/A9 peptides that inhibit essential regions binding to TLR4 and RAGE.
Fig. 3: S100A8/A9 peptide inhibits the activation of NLRP3 inflammasome.
Fig. 4: The effects drug-like properties of rCT-S100A8/A9.
Fig. 5: rCT-S100A8/A9 has a therapeutic effect against DSS-induced acute and chronic colitis in mice.
Fig. 6: rCT-S100A8/A9 has a therapeutic effect against AOM/DSS-induced colitis-associated colorectal cancer in mice.
Fig. 7: rCT-S100A8/A9 ameliorated oxaliplatin-resistant HCT116 xenograft tumor growth.

Similar content being viewed by others

References

  1. Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol. 2019;20:970–9.

    Article  CAS  PubMed  Google Scholar 

  2. Vuyyuru SK, Kedia S, Sahu P, Ahuja V. Immune-mediated inflammatory diseases of the gastrointestinal tract: beyond Crohn’s disease and ulcerative colitis. JGH Open. 2022;6:100–11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim ER, Chang DK. Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol. 2014;20:9872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Danese S, Vuitton L, Peyrin-Biroulet L. Biologic agents for IBD: practical insights. Nat Rev Gastroenterol Hepatol. 2015;12:537–45.

    Article  CAS  PubMed  Google Scholar 

  6. Gaujoux R, Starosvetsky E, Maimon N, Vallania F, Bar-Yoseph H, Pressman S, et al. Cell-centred meta-analysis reveals baseline predictors of anti-TNFalpha non-response in biopsy and blood of patients with IBD. Gut. 2019;68:604–14.

    Article  CAS  PubMed  Google Scholar 

  7. Nixon AB, Sibley AB, Liu Y, Hatch AJ, Jiang C, Mulkey F, et al. Plasma protein biomarkers in advanced or metastatic colorectal cancer patients receiving chemotherapy with bevacizumab or cetuximab: results from CALGB 80405 (Alliance). Clin Cancer Res. 2022;28:2779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krasteva N, Georgieva M. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials. Pharmaceutics. 2022;14:1213.

  9. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85.

    Article  PubMed  Google Scholar 

  10. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma L, Sun P, Zhang JC, Zhang Q, Yao SL. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int J Mol Med. 2017;40:31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakraborty D, Zenker S, Rossaint J, Holscher A, Pohlen M, Zarbock A, et al. Alarmin S100A8 activates alveolar epithelial cells in the context of acute lung injury in a TLR4-dependent manner. Front Immunol. 2017;8:1493.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meuwis MA, Vernier-Massouille G, Grimaud JC, Bouhnik Y, Laharie D, Piver E, et al. Serum calprotectin as a biomarker for Crohn’s disease. J Crohns Colitis. 2013;7:e678–83.

    Article  PubMed  Google Scholar 

  14. Pepper RJ, Hamour S, Chavele KM, Todd SK, Rasmussen N, Flint S, et al. Leukocyte and serum S100A8/S100A9 expression reflects disease activity in ANCA-associated vasculitis and glomerulonephritis. Kidney Int. 2013;83:1150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boyapati RK, Rossi AG, Satsangi J, Ho GT. Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunol. 2016;9:567–82.

    Article  CAS  PubMed  Google Scholar 

  16. Benoit S, Toksoy A, Ahlmann M, Schmidt M, Sunderkotter C, Foell D, et al. Elevated serum levels of calcium-binding S100 proteins A8 and A9 reflect disease activity and abnormal differentiation of keratinocytes in psoriasis. Br J Dermatol. 2006;155:62–6.

    Article  CAS  PubMed  Google Scholar 

  17. Shi C, Dawulieti J, Shi F, Yang C, Qin Q, Shi T, et al. A nanoparticulate dual scavenger for targeted therapy of inflammatory bowel disease. Sci Adv. 2022;8:eabj2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arevalo-Perez R, Maderuelo C, Lanao JM. Recent advances in colon drug delivery systems. J Control Release. 2020;327:703–24.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar R, Islam T, Nurunnabi M. Mucoadhesive carriers for oral drug delivery. J Control Release. 2022;351:504–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ren Y, Mu Y, Song Y, Xie J, Yu H, Gao S, et al. A new peptide ligand for colon cancer targeted delivery of micelles. Drug Deliv. 2016;23:1763–72.

    Article  CAS  PubMed  Google Scholar 

  21. Kim JS, Kim HK, Kim M, Jang S, Cho E, Mun SJ, et al. Colon-Targeted eNAMPT-Specific Peptide Systems for Treatment of DSS-Induced Acute and Chronic Colitis in Mouse. Antioxidants. 2022;11:2376.

  22. Kim JS, Kim HK, Lee J, Jang S, Cho E, Mun SJ, et al. Inhibition of CD82 improves colitis by increasing NLRP3 deubiquitination by BRCC3. Cell Mol Immunol. 2023;20:189–200.

    Article  CAS  PubMed  Google Scholar 

  23. Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, et al. Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 2018;233:5458–67.

    Article  CAS  PubMed  Google Scholar 

  24. Sun W, Ge Y, Cui J, Yu Y, Liu B. Scutellarin resensitizes oxaliplatin-resistant colorectal cancer cells to oxaliplatin treatment through inhibition of PKM2. Mol Ther Oncolytics. 2021;21:87–97.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Greenlee JD, Lopez-Cavestany M, Ortiz-Otero N, Liu K, Subramanian T, Cagir B, et al. Oxaliplatin resistance in colorectal cancer enhances TRAIL sensitivity via death receptor 4 upregulation and lipid raft localization. eLife. 2021;10:e67750.

  26. Duan L, Wu R, Ye L, Wang H, Yang X, Zhang Y, et al. S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/beta-catenin pathway. PLoS One. 2013;8:e62092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pu W, Zhang H, Zhang T, Guo X, Wang X, Tang S. Inhibitory effects of Clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice. Front Immunol. 2023;14:1004756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, Martinez CM, Amores-Iniesta J, Compan V, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15:738–48.

    Article  CAS  PubMed  Google Scholar 

  29. Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018;18:e27.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer. 2015;15:96–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh P, Ali SA. Multifunctional role of S100 protein family in the immune system: an update. Cells. 2022;11:2274.

  32. Chen QL, Yin HR, He QY, Wang Y. Targeting the NLRP3 inflammasome as new therapeutic avenue for inflammatory bowel disease. Biomed Pharmacother. 2021;138:111442.

    Article  CAS  PubMed  Google Scholar 

  33. Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, et al. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 2020;11:776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut. 2010;59:1192–9.

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Wang X, Zhang H, Deng T, Liu R, Liu Y, et al. The HSF1/miR-135b-5p axis induces protective autophagy to promote oxaliplatin resistance through the MUL1/ULK1 pathway in colorectal cancer. Oncogene. 2021;40:4695–708.

    Article  CAS  PubMed  Google Scholar 

  36. Kim YHCAD. Enhanced TLR4 expression on colon cancer cells after chemotherapy promotes cell survival and epithelial–mesenchymal transition through phosphorylation of GSK3β. Anticancer Res. 2016;36:3383–94.

  37. Santaolalla R, Sussman DA, Ruiz JR, Davies JM, Pastorini C, Espana CL, et al. TLR4 activates the beta-catenin pathway to cause intestinal neoplasia. PLoS One. 2013;8:e63298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J, et al. RAGE, carboxylated glycans, and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis. 2008;29:2035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9:133–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself. 2010;1:314–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guo Q, Zhao Y, Li J, Liu J, Yang X, Guo X, et al. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19. Cell Host Microbe. 2021;29:222–35.

    Article  CAS  PubMed  Google Scholar 

  42. Vogl T, Stratis A, Wixler V, Voller T, Thurainayagam S, Jorch SK, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128:1852–66.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jang GY, Lee JW, Kim YS, Lee SE, Han HD, Hong KJ, et al. Interactions between tumor-derived proteins and Toll-like receptors. Exp Mol Med. 2020;52:1926–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet. 2017;389:1756–70.

    Article  PubMed  Google Scholar 

  45. Body-Malapel M, Djouina M, Waxin C, Langlois A, Gower-Rousseau C, Zerbib P, et al. The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for inflammatory bowel diseases. Mucosal Immunol. 2019;12:468–78.

    Article  CAS  PubMed  Google Scholar 

  46. Tourkochristou E, Aggeletopoulou I, Konstantakis C, Triantos C. Role of NLRP3 inflammasome in inflammatory bowel diseases. World J Gastroenterol. 2019;25:4796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:128.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Franz S, Ertel A, Engel KM, Simon JC, Saalbach A. Overexpression of S100A9 in obesity impairs macrophage differentiation via TLR4-NF-κB-signaling worsening inflammation and wound healing. Theranostics. 2022;12:1659–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang M, Wu R, Chen L, Peng Q, Li S, Zhang Y, et al. S100A9 regulates MDSCs-mediated immune suppression via the RAGE and TLR4 signaling pathways in colorectal carcinoma. Front Immunol. 2019;10:2243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwak T, Wang F, Deng H, Condamine T, Kumar V, Perego M, et al. Distinct populations of immune-suppressive macrophages differentiate from monocytic myeloid-derived suppressor cells in cancer. Cell Rep. 2020;33:108571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haastrup PF, Thompson W, Sondergaard J, Jarbol DE. Side effects of long-term proton pump inhibitor use: a review. Basic Clin Pharmacol Toxicol. 2018;123:114–21.

    Article  CAS  PubMed  Google Scholar 

  52. Stuermer EK, Besser M, Terberger N, Bachmann HS, Severing AL. Side effects of frequently used antihypertensive drugs on wound healing in vitro. Ski Pharm Physiol. 2019;32:162–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Infection Biology Lab for critical reading and discussion of the manuscript. This work was supported by a National Research Foundation of Korea grant funded by the Korea government (MSIP) (grant no. 2019R1I1A2A01064237 and 2021R1A4A5032463), by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health &Welfare, Republic of Korea (HI22C0884). EC was supported by the Health Fellowship Foundation.

Author information

Authors and Affiliations

Authors

Contributions

EC, SJM, HKK, YSH, and WJG performed molecular and animal experiments and also analyzed the data. CSY designed and conceptualized the research supervised the experimental work, analyzed the data, and wrote the manuscript

Corresponding author

Correspondence to Chul-Su Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, E., Mun, SJ., Kim, H.K. et al. Colon-targeted S100A8/A9-specific peptide systems ameliorate colitis and colitis-associated colorectal cancer in mouse models. Acta Pharmacol Sin 45, 581–593 (2024). https://doi.org/10.1038/s41401-023-01188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01188-2

Keywords

Search

Quick links