Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The pharmacogenetics of tacrolimus in renal transplant patients: association with tremors, new-onset diabetes and other clinical events

Abstract

Our study is the first study to investigate the effect of SNPs in CYP3A5, CYP3A4, ABCB1 and POR genes on the incidence of tremors, nephrotoxicity, and diabetes mellitus. A total of 223 renal transplant patients receiving tacrolimus and mycophenolate mofetil (MMF) were recruited. Both adults and children patients participated in the study. Genotyping was performed using PROFLEX-PCR followed by RFLP. MPA and tacrolimus plasma concentrations were measured by immunoassay. The AUC0-12h of MMF was estimated by a Bayesian method. We found a statistically significant association between the CYP3A5*3 and CYP3A4*1B genotypes and the tacrolimus exposure. We found a lower occurrence of nephrotoxicity (p = 0.03), tremor (p = 0.01), and new-onset diabetes (p = 0.002) associated with CYP3A5*1 allele. The CYP3A4*1B allele was significantly associated with a lower occurrence of new-onset diabetes (p = 0.026). The CYP3A5*1 allele was significantly associated with an increased risk of acute and chronic rejection (p = 0.03 and p < 0.001, respectively). Our results support the usefulness of tacrolimus pharmacokinetics in pre-kidney transplant assessments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Pritchard DI. Sourcing a chemical succession for cyclosporine from parasites and human pathogens. Drug Discov Today. 2005;10:688–91.

    Article  PubMed  Google Scholar 

  2. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokin. 2004;43:623–53.

    Article  CAS  Google Scholar 

  3. Macian F, Garcia-Rodriguez C, Rao A. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J. 2000;19:4783–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Foletta VC, Segal DH, Cohen DR. Transcriptional regulation in the immune system: all roads lead to AP-1. J Leukoc Biol. 1998;63:139–52.

    Article  CAS  PubMed  Google Scholar 

  5. Matsuda S, Moriguchi T, Koyasu S, Nishida ET. T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J Biol Chem. 1998;273:12378–82.

    Article  CAS  PubMed  Google Scholar 

  6. Christians U, Strom T, Zhang YL, Steudel W, Schmitz V, Trump S, et al. Active drug transport of immunosuppressants: new insights for pharmacokinetics and pharmacodynamics. Ther Drug Monit 2006;28:39–44.

    Article  CAS  PubMed  Google Scholar 

  7. Scott RR, Miller WL. Genetic and clinical features of p450 oxidoreductase deficiency. Horm Res Paediatr. 2008;69:266–75.

    Article  CAS  Google Scholar 

  8. Pandey AV, Sproll P. Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol 2014;5:103.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev. 2000;80:1483–521.

    Article  CAS  PubMed  Google Scholar 

  10. Clipstone NA, Crabtree GR. Identification of calcineurin as a key signalling enzyme in Tlymphocyte activation. Nature. 1992;357:695–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Cardenas ME, Hemenway C, Muir RS, Ye R, Fiorentino D, Heitman J. Immunophilins interact with calcineurin in the absence of exogenous immunosuppressive ligands. EMBO J. 1994;13:5944–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsuda S, Shibasaki F, Takehana K, Mori H, Nishida E, Koyasu S. Two distinct action mechanisms of immunophilin-ligand complexes for the blockade of T-cell activation. EMBO Rep. 2000;1:428–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brabletz T, Pfeuffer I, Schorr E, Siebelt F, Wirth T, Serfling E. Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site. Mol Cell Biol. 1993;13:1155–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shuker N, Bouamar R, van Schaik RH, Clahsen-van Groningen MC, Damman J, Baan CC, et al. A Randomized controlled trial comparing the efficacy of CYP3A5 genotype-based with bodyweight-based tacrolimus dosing after living donor kidney transplantation. Am J Transpl. 2016;16:2085–96.

    Article  CAS  Google Scholar 

  15. van Schaik RH, van Agteren M, de Fijter JW, Hartmann A, Schmidt J, Budde K, et al. UGT1A9-275T>A/-2152C>T polymorphismscorrelatewith low MPA exposure and acute rejection in MMF/tacrolimus-treatedkidney transplant patients. Clin Pharmacol Ther 2009;86:319–8.

    Article  PubMed  Google Scholar 

  16. van Gelder T, Silva HT, de Fijter JW, Budde K, Kuypers D, Tyden G, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation. 2008;86:1043–51.

    Article  PubMed  Google Scholar 

  17. Liu Z, Yuan X, Luo Y, He Y, Jiang Y, Chen ZK, et al. Evaluating the effects of immunosuppressants on human immunity using cytokineprofiles of whole blood. Cytokine. 2009;45:141–7.

    Article  CAS  PubMed  Google Scholar 

  18. Barraclough KA, Staatz CE, Johnson DW, Lee KJ, McWhinney BC, Ungerer JP, et al. Kidney transplant outcomes are related to tacrolimus, mycophenolic acid and prednisolone exposure in the first week. Transpl Int. 2012;25:1182–93.

    Article  CAS  PubMed  Google Scholar 

  19. Abderahmene A, Ellouz A, Amor D, Ajmi M, Khalij Y, Hamdouni H, et al. The pharmacogenetics of mycophenolate mofetil in Tunisian renal transplant patients. Per Med. 2022;19:383–93.

    Article  CAS  PubMed  Google Scholar 

  20. Shu Q, Fan Q, Hua B, Liu H, Wang S, Liu Y, et al. Influence of SLCO1B1 521T>C, UGT2B7 802C>T and IMPDH1 -106G>A Genetic Polymorphisms on Mycophenolic Acid Levels and Adverse Reactions in Chinese Autoimmune Disease Patients. Pharmgenomics Pers Med. 2021 Jun 21;14:713-22.

    PubMed  PubMed Central  Google Scholar 

  21. Andreu F, Colom H, Elens L, van Gelder T, van Schaik RHN, Hesselink DA, et al. A New CYP3A5*3 and CYP3A4*22 cluster influencing tacrolimus target concentrations: a population approach. Clin Pharmacokinet. 2017;56:963–75.

    Article  CAS  PubMed  Google Scholar 

  22. van Gelder T, van Schaik RH, Hesselink DA. Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat Rev Nephrol. 2014;10:725–31.

    Article  PubMed  Google Scholar 

  23. Kagaya H, Niioka T, Saito M, Inoue T, Numakura K, Habuchi T, et al. Effect of hepatic drug transporter polymorphisms on the pharmacokinetics of mycophenolic acid in patients with severe renal dysfunction before renal transplantation. Xenobiotica. 2017;47:916–22.

    Article  CAS  PubMed  Google Scholar 

  24. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27:383–91.

    Article  CAS  PubMed  Google Scholar 

  25. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharm Ther. 2015;98:19–24.

    Article  CAS  Google Scholar 

  26. Wang R, Sun X, Deng YS, Qiu XW. Effects of MDR1 1236C > T-2677G > T-3435C > T polymorphisms on the intracellular accumulation of tacrolimus, cyclosporine A, sirolimus and everolimus. Xenobiotica. 2019;49:1373–8.

    Article  CAS  PubMed  Google Scholar 

  27. Tada H, Tsuchiya N, Satoh S, Kagaya H, Li Z, Sato K, et al. Impact of CYP3A5 and MDR1 (ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transpl Proc. 2005;37:1730–2.

    Article  CAS  Google Scholar 

  28. Kuypers DR, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y. CYP3A5 and CYP3A4 but not MDR1 single‐nucleotide polymorphisms determine long‐term tacrolimus disposition and drug‐related nephrotoxicity in renal recipients. Clin Pharm Ther. 2007;82:711–25.

    Article  CAS  Google Scholar 

  29. Wallemacq P, Armstrong VW, Brunet M, Haufroid V, Holt DW, Johnston A, et al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European Consensus Conference. Ther Drug Monit. 2009;31:139–52.

    Article  CAS  PubMed  Google Scholar 

  30. Limoges University Hospital Pharmacology Laboratory. Access portal to the websites of routine and clinical trials of the Limoges University Hospital Laboratory of Pharmacology. https://pharmaco.chu-limoges.fr.

  31. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Provenzani A, Notarbartolo M, Labbozzetta M, Poma P, Biondi F, Sanguedolce R, et al. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. Ann Transpl. 2009;14:23–31.

    CAS  Google Scholar 

  33. Wang P, Zhang Q, Tian X, Yang J, Zhang X. Tacrolimus starting dose prediction based on genetic polymorphisms and clinical factors in Chinese renal transplant recipients. Genet Test Mol Biomark. 2020;24:665–73.

    Article  CAS  Google Scholar 

  34. Ling J, Dong LL, Yang XP, Qian Q, Jiang Y, Zou SL, et al. Effects of CYP3A5, ABCB1 and POR* 28 polymorphisms on pharmacokinetics of tacrolimus in the early period after renal transplantation. Xenobiotica. 2020;50:1501–9.

    Article  CAS  PubMed  Google Scholar 

  35. Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogenomics J. 2020;20:553–62.

    Article  CAS  PubMed  Google Scholar 

  36. Staatz C, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet 2010;49:141–75.

    Article  CAS  PubMed  Google Scholar 

  37. Zaza G, Granata S, Tomei P, Dalla Gassa A, Lupo A. Personalization of the Immunosuppressive Treatment in Renal Transplant Recipients: The Great Challenge in “Omics” Medicine. Int J Mol Sci. 2015;16:4281–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharm. 2002;62:162–72.

    Article  CAS  Google Scholar 

  39. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002;54:1271–94.

    Article  CAS  PubMed  Google Scholar 

  40. Min SI, Kim SY, Ahn SH, Min SK, Kim SH, Kim YS, et al. CYP3A5* 1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients. Transplantation 2010;90:1394–400.

    Article  CAS  PubMed  Google Scholar 

  41. Jose M. Calcineurin inhibitors in renal transplantation: adverse effects. Nephrology. 2007;12:S66–74.

    Article  CAS  PubMed  Google Scholar 

  42. Miura Y, Satoh S, Saito M, Numakura K, Inoue T, Obara T, et al. Factors increasing quantitative interstitial fibrosis from 0 h to 1 year in living kidney transplant patients receiving tacrolimus. Transplantation. 2011;91:78–85.

    Article  CAS  PubMed  Google Scholar 

  43. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4:481–508.

    Article  CAS  PubMed  Google Scholar 

  44. Pirsch JD, Miller J, Deierhoi MH, Vincenti F, Filo RS. A comparison of tacrolimus (fk506) and cyclosporine for immunosuppression after cadaveric renal transplantation1. Transplantation. 1997;63:977–83.

    Article  CAS  PubMed  Google Scholar 

  45. Yanagimachi M, Naruto T, Tanoshima R, Kato H, Yokosuka T, Kajiwara R, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation. Clin Transpl. 2010;24:855–61.

    Article  CAS  Google Scholar 

  46. Wijdicks EF. Neurotoxicity of immunosuppressive drugs. Liver Transpl. 2001;7:937–42.

    Article  CAS  PubMed  Google Scholar 

  47. Goldmannova D, Karasek D, Krystynik O, Zadrazil J. New-onset diabetes mellitus after renal transplantation. Biomed Pap. 2016;160:195–200.

    Article  Google Scholar 

  48. Shivaswamy V, Bennett RG, Clure CC, Ottemann B, Davis JS, Larsen JL. Tacrolimus and sirolimus have distinct effects on insulin signaling in male and female rats. Trans Res. 2014;163:221–31.

    Article  CAS  Google Scholar 

  49. Drachenberg CB, Klassen DK, Weir MR, Wiland A, Fink JC, Bartlett ST, et al. cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation1. Transplantation. 1999;68:396–402.

    Article  CAS  PubMed  Google Scholar 

  50. Ahmed SH, Biddle K, Augustine T, Azmi S. Post-transplantation diabetes mellitus. Diabetes Ther. 2020;11:779–801.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Soleimanpour SA, Crutchlow MF, Ferrari AM, Raum JC, Groff DN, Rankin MM, et al. Calcineurin signaling regulates human islet β-cell survival. J Biol Chem 2010;285:40050–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rysz J, Franczyk B, Radek M. Diabetes and Cardiovascular Risk in Renal Transplant Patients. Int J Mol Sci. 2021;22:3422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rickels MR, Naji A, Teff KL. Insulin sensitivity, glucose effectiveness, and free fatty acid dynamics after human islet transplantation for type 1 diabetes. J Clin Endocrinol Metab. 2006;91:2138–44.

    Article  CAS  PubMed  Google Scholar 

  54. Asberg A, Midtvedt K, Voytovich MH, Line PD, Narverud J, Reisaeter AV, et al. Calcineurin inhibitor effects on glucose metabolism and endothelial function following renal transplantation. Clin Transplant 2009;23:511–8.

    Article  PubMed  Google Scholar 

  55. Hesselink DA, van Schaik RH, van Gelder T. Single-nucleotide polymorphisms in P450 oxidoreductase and peroxisome proliferator-activated receptor-_ are associated with the development of new-onset diabetes after transplantation in kidney transplant recipients treated with tacrolimus. Pharm Genom 2013;23:649–57.

    Article  Google Scholar 

  56. Shi WL, Tang HL, Zhai SD. Effects of the CYP3A4* 1B genetic polymorphism on the pharmacokinetics of tacrolimus in adult renal transplant recipients: a meta-analysis. PloS one. 2015;10:e0127995.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lesche D, Sigurdardottir V, Setoud R, Oberhänsli M, Carrel T, Fiedler GM, et al. CYP3A5* 3 and POR* 28 genetic variants influence the required dose of tacrolimus in heart transplant recipients. Ther Drug Monit 2014;36:710–5.

    Article  CAS  PubMed  Google Scholar 

  58. Aouam K, Kolsi A, Kerkeni E, Ben Fredj N, Chaabane A, Monastiri K, et al. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase. Pharmacogenomics. 2015;16:2045–54.

    Article  CAS  PubMed  Google Scholar 

  59. Cheng F, Li Q, Wang J, Hu M, Zeng F, Wang Z, et al. Genetic polymorphisms affecting tacrolimus metabolism and the relationship to post-transplant outcomes in kidney transplant recipients. Pharmacogenomics Pers Med. 2021;14:1463.

    CAS  Google Scholar 

  60. Zhang R. Modern immunosuppressive therapy in kidney transplantation. Open J Organ Transpl Surg. 2013;3:22–31.

    Article  Google Scholar 

  61. Yamada Y, Matsuo H, Watanabe S, Kato K, Yajima K, Hibino T, et al. Association of a polymorphism of CYP3A4 with type 2 diabetes mellitus. Int J Mol Med. 2007;20:703–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the Tunisian Ministry of Higher Education, Scientific Research and Technology and the Ministry of Health

Author information

Authors and Affiliations

Authors

Contributions

This study was supervised by AO and AB. AA, YK and AM designed the study. AA, AE and MA recruited the patients. AA, HA, MRG, WS, SC and DZ obtained the data. Amani Abderahmene performed the genotyping. DA performed the measurement of AUC0-12 MPA. AO and AA performed the statistical analysis and the interpretation of the data. AA wrote the manuscript. AO and DA provided a critical review of the manuscript.

Corresponding author

Correspondence to Amani Abderahmene.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41397_2024_323_MOESM1_ESM.docx

The pharmacogenetics of tacrolimus in renal transplant patients: Association with tremors, new-onset diabetes and other clinical events

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abderahmene, A., khalij, Y., Moussa, A. et al. The pharmacogenetics of tacrolimus in renal transplant patients: association with tremors, new-onset diabetes and other clinical events. Pharmacogenomics J 24, 3 (2024). https://doi.org/10.1038/s41397-024-00323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41397-024-00323-4

Search

Quick links