Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Algorithm for predicting low maintenance doses of warfarin using age and polymorphisms in genes CYP2C9 and VKORC1 in Brazilian subjects

Abstract

Warfarin exhibits a wide variation in dose requirements. We sought to evaluate the association of polymorphisms CYP2C9*2 (rs1799853), CYP2C9*3 (rs1075910), and VKORC1-G1639A (rs9923231) and nongenetic factors with maintenance doses of warfarin <17.5 mg/week and to create an algorithm to predict drug sensitivity. This is a retrospective cohort study including 312 patients assisted at an anticoagulation clinic in Brazil. The mean age of participants was 60.4 ± 13.5 years and 59.9% were female. The logistic regression model included: age [odds ratio (OR) 1.03, 95% confidence interval (CI) 1.01–1.06], genotype VKORC1 AA (OR 31.61, 95% CI 11.20–100.15) and genotype CYP2C9 2/2, 2/3 or 3/3 (OR 16.48, 95% CI 3.37–81.79). The creation of our algorithm involved warfarin-experienced patients on stable doses, identifying factors associated with drug sensitivity. The validation of this algorithm allows its use in future populations to determine the initial dose distinguishing patients with dose requirements <17.5 mg and reducing time to achieve stable doses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Tereshchenko LG, Henrikson CA, Cigarroa J, Steinberg JS. Comparative effectiveness of interventions for stroke prevention in atrial fibrillation: a network meta-analysis. J Am Heart Assoc. 2016;5:1–17.

    Google Scholar 

  2. Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G. Oral anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2012;141:e44S–88S.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–64.

    CAS  PubMed  Google Scholar 

  4. Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW, et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation. 2012;125:1997–2005.

    CAS  PubMed  Google Scholar 

  5. de Oliveira Almeida VC, Ribeiro DD, Gomes KB, Godard AL. Polymorphisms of CYP2C9, VKORC1, MDR1, APOE and UGT1A1 genes and the therapeutic warfarin dose in Brazilian patients with thrombosis: a prospective cohort study. Mol Diagn Ther. 2014;18:675–83.

    PubMed  Google Scholar 

  6. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharm Ther. 2008;84:326–31.

    CAS  Google Scholar 

  7. Bourgeois S, Jorgensen A, Zhang EJ, Hanson A, Gillman MS, Bumpstead S, et al. A multi-factorial analysis of response to warfarin in a UK prospective cohort. Genome Med. 2016;8:1–12.

    Google Scholar 

  8. Caldwell MD, Berg RL, Zhang KQ, Glurich I, Schmelzer JR, Yale SH, et al. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res. 2007;5:8–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5:e1000433.

    PubMed  PubMed Central  Google Scholar 

  10. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113:784–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90:625–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics. 2002;12:251–63.

    CAS  PubMed  Google Scholar 

  13. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature. 2004;427:541–4.

    CAS  PubMed  Google Scholar 

  14. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004;427:537–41.

    CAS  PubMed  Google Scholar 

  15. Loebstein R, Dvoskin I, Halkin H, Vecsler M, Lubetsky A, Rechavi G, et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood. 2007;109:2477–80.

    CAS  PubMed  Google Scholar 

  16. Yang L, Ge W, Yu F, Zhu H. Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement–a systematic review and meta analysis. Thromb Res. 2010;125:e159–66.

    CAS  PubMed  Google Scholar 

  17. Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet. 2005;14:1745–51.

    CAS  PubMed  Google Scholar 

  18. Tavares LC, Marcatto LR, Santos P. Genotype-guided warfarin therapy: current status. Pharmacogenomics. 2018;19:667–85.

    CAS  PubMed  Google Scholar 

  19. Tang HL, Shi WL, Li XG, Zhang T, Zhai SD, Xie HG. Limited clinical utility of genotype-guided warfarin initiation dosing algorithms versus standard therapy: a meta-analysis and trial sequential analysis of 11 randomized controlled trials. Pharm J. 2015;15:496–504.

    CAS  Google Scholar 

  20. Dahal K, Sharma SP, Fung E, Lee J, Moore JH, Unterborn JN, et al. Meta-analysis of randomized controlled trials of genotype-guided vs standard dosing of warfarin. Chest. 2015;148:701–10.

    PubMed  PubMed Central  Google Scholar 

  21. Yang T, Zhou Y, Chen C, Lu M, Ma L, Cui Y. Genotype-guided dosing versus conventional dosing of warfarin: A meta-analysis of 15 randomized controlled trials. J Clin Pharm Ther. 2019;44:197–208.

    CAS  PubMed  Google Scholar 

  22. Belley-Cote EP, Hanif H, D’Aragon F, Eikelboom JW, Anderson JL, Borgman M, et al. Genotype-guided versus standard vitamin K antagonist dosing algorithms in patients initiating anticoagulation. A systematic review and meta-analysis. Thromb Haemost. 2015;114:768–77.

    PubMed  Google Scholar 

  23. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin Pharm Ther. 2017;102:397–404.

    CAS  Google Scholar 

  24. de Lima Silva RG, Bertollo CM, Ferreira IG, Brant LC, Martins MAP. Assessment of oral anticoagulation control at two pharmacist-managed clinics in Brazil. Int J Clin Pharm. 2017;39:1157–61.

    PubMed  Google Scholar 

  25. Connolly SJ, Pogue J, Eikelboom J, Flaker G, Commerford P, Franzosi MG, et al. Benefit of oral anticoagulant over antiplatelet therapy in atrial fibrillation depends on the quality of international normalized ratio control achieved by centers and countries as measured by time in therapeutic range. Circulation. 2008;118:2029–37.

    CAS  PubMed  Google Scholar 

  26. Martins MAP, Costa JM, Mambrini JVM, Ribeiro ALP, Benjamin EJ, Brant LCC, et al. Health literacy and warfarin therapy at two anticoagulation clinics in Brazil. Heart. 2017;103:1089–95.

    PubMed  PubMed Central  Google Scholar 

  27. Skinner HA, Holt S, Schuller R, Roy J, Israel Y. Identification of alcohol abuse using laboratory tests and a history of trauma. Ann Intern Med. 1984;101:847–51.

    CAS  PubMed  Google Scholar 

  28. Perini JA, Struchiner CJ, Silva-Assuncao E, Santana IS, Rangel F, Ojopi EB, et al. Pharmacogenetics of warfarin: development of a dosing algorithm for brazilian patients. Clin Pharm Ther. 2008;84:722–8.

    CAS  Google Scholar 

  29. Santos PC, Marcatto LR, Duarte NE, Gadi Soares RA, Cassaro Strunz CM, Scanavacca M, et al. Development of a pharmacogenetic-based warfarin dosing algorithm and its performance in Brazilian patients: highlighting the importance of population-specific calibration. Pharmacogenomics. 2015;16:865–76.

    CAS  PubMed  Google Scholar 

  30. Rosendaal FR, Cannegieter SC, van der Meer FJ, Briet E. A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost. 1993;69:236–9.

    CAS  PubMed  Google Scholar 

  31. Redman AR, Zheng J, Shamsi SA, Huo J, Kelly EJ, Ho RJ, et al. Variant CYP2C9 alleles and warfarin concentrations in patients receiving low-dose versus average-dose warfarin therapy. Clin Appl Thromb Hemost. 2008;14:29–37.

    CAS  PubMed  Google Scholar 

  32. Botton MR, Bandinelli E, Rohde LE, Amon LC, Hutz MH. Influence of genetic, biological and pharmacological factors on warfarin dose in a Southern Brazilian population of European ancestry. Br J Clin Pharm. 2011;72:442–50.

    CAS  Google Scholar 

  33. Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements–a systematic review and meta-analysis. Eur J Clin Pharm. 2009;65:365–75.

    CAS  Google Scholar 

  34. Suarez-Kurtz G, Perini JA, Silva-Assuncao E, Struchiner CJ. Relative contribution of VKORC1, CYP2C9, and INR response to warfarin stable dose. Blood. 2009;113:4125–416.

    CAS  PubMed  Google Scholar 

  35. Verhoef TI, Redekop WK, Daly AK, van Schie RM, de Boer A, Maitland-van der Zee AH. Pharmacogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon. Br J Clin Pharmacol. 2014;77:626–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Suarez-Kurtz G, Botton MR. Pharmacogenetics of coumarin anticoagulants in Brazilians. Expert Opin Drug Metab Toxicol. 2015;11:67–79.

    CAS  PubMed  Google Scholar 

  37. Saleh MI. Clinical predictors associated with warfarin sensitivity. Am J Ther. 2016;23:e1690–4.

    PubMed  Google Scholar 

  38. Ufer M. Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharm. 2005;44:1227–46.

    CAS  Google Scholar 

  39. Polasek TM, Patel F, Jensen BP, Sorich MJ, Wiese MD, Doogue MP. Predicted metabolic drug clearance with increasing adult age. Br J Clin Pharm. 2013;75:1019–28.

    CAS  Google Scholar 

  40. Garcia D, Regan S, Crowther M, Hughes RA, Hylek EM. Warfarin maintenance dosing patterns in clinical practice: implications for safer anticoagulation in the elderly population. Chest. 2005;127:2049–56.

    CAS  PubMed  Google Scholar 

  41. Eckman MH, Rosand J, Greenberg SM, Gage BF. Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med. 2009;150:73–83.

    PubMed  Google Scholar 

  42. Francis B, Lane S, Pirmohamed M, Jorgensen A. A review of a priori regression models for warfarin maintenance dose prediction. PLoS ONE. 2014;9:e114896.

    PubMed  PubMed Central  Google Scholar 

  43. Verbelen M, Weale ME, Lewis CM. Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharm J. 2017;17:395–402.

    CAS  Google Scholar 

  44. Verhoef TI, Redekop WK, Langenskiold S, Kamali F, Wadelius M, Burnside G, et al. Cost-effectiveness of pharmacogenetic-guided dosing of warfarin in the United Kingdom and Sweden. Pharm J. 2016;16:478–84.

    CAS  Google Scholar 

  45. Kim DJ, Kim HS, Oh M, Kim EY, Shin JG. Cost effectiveness of genotype-guided warfarin dosing in patients with mechanical heart valve replacement under the fee-for-service system. Appl Health Econ Health Policy. 2017;15:657–67.

    PubMed  Google Scholar 

  46. Mitropoulou C, Fragoulakis V, Bozina N, Vozikis A, Supe S, Bozina T, et al. Economic evaluation of pharmacogenomic-guided warfarin treatment for elderly Croatian atrial fibrillation patients with ischemic stroke. Pharmacogenomics. 2015;16:137–48.

    CAS  PubMed  Google Scholar 

  47. Friedrich DC, Genro JP, Sortica VA, Suarez-Kurtz G, de Moraes ME, Pena SD, et al. Distribution of CYP2D6 alleles and phenotypes in the Brazilian population. PLoS ONE. 2014;9:e110691.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical of the Universidade Federal de Minas Gerais, the Pró-Reitoria de Pesquisa da Universidade Federal de Minas Gerais and the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG). MOCR, RPS, and KBG are researchers of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author contributions

AOMM, MOCR, DDR, and MAPM have designed the study. AOMM collected data. AOMM, EIFC, and KGB performed genotyping assays. AOMM, RPS, EAR, and MAPM planned and conducted statistical analysis. AOMM, MOCR, DDR, MAPM, and KGB assisted in interpreting the results. AOMM drafted the first version of the study protocol. All authors have provided relevant contributions to drafting, editing, and revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Auxiliadora Parreiras Martins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Magalhães Mourão, A., Braga Gomes, K., Afonso Reis, E. et al. Algorithm for predicting low maintenance doses of warfarin using age and polymorphisms in genes CYP2C9 and VKORC1 in Brazilian subjects. Pharmacogenomics J 20, 104–113 (2020). https://doi.org/10.1038/s41397-019-0091-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0091-3

This article is cited by

Search

Quick links