Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Candidate gene analyses for acute pain and morphine analgesia after pediatric day surgery: African American versus European Caucasian ancestry and dose prediction limits

Abstract

Acute pain and opioid analgesia demonstrate inter-individual variability and polygenic influence. In 241 children of African American and 277 of European Caucasian ancestry, we sought to replicate select candidate gene associations with morphine dose and postoperative pain and then to estimate dose prediction limits. Twenty-seven single-nucleotide polymorphisms (SNPs) from nine genes (ABCB1, ARRB2, COMT, DRD2, KCNJ6, MC1R, OPRD1, OPRM1, and UGT2B7) met selection criteria and were analyzed along with TAOK3. Few associations replicated: morphine dose (mcg/kg) in African American children and ABCB1 rs1045642 (A allele, β = −9.30, 95% CI: −17.25 to −1.35, p = 0.02) and OPRM1 rs1799971 (G allele, β = 23.19, 95% CI: 3.27–43.11, p = 0.02); KCNJ6 rs2211843 and high pain in African American subjects (T allele, OR 2.08, 95% CI: 1.17–3.71, p = 0.01) and in congruent European Caucasian pain phenotypes; and COMT rs740603 for high pain in European Caucasian subjects (A allele, OR: 0.69, 95% CI: 0.48–0.99, p = 0.046). With age, body mass index, and physical status as covariates, simple top SNP candidate gene models could explain theoretical maximums of 24.2% (European Caucasian) and 14.6% (African American) of morphine dose variances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lötsch J, Doehring A, Mogil JS, Arndt T, Geisslinger G, Ultsch A. Functional genomics of pain in analgesic drug development and therapy. Pharmacol Ther. 2013;139:60–70.

    PubMed  Google Scholar 

  2. Nielsen CS, Stubhaug A, Price DD, Vassend O, Czajkowski N, Harris JR. Individual differences in pain sensitivity: genetic and environmental contributions. Pain. 2008;136:21–29.

    PubMed  Google Scholar 

  3. Candiotti KA, Yang Z, Buric D, Arheart K, Zhang Y, Rodriguez Y, et al. Catechol-O-methyltransferase polymorphisms predict opioid consumption in postopereative pain. Anesth Analg. 2014;119:1194–1200.

    CAS  PubMed  Google Scholar 

  4. Choi SW, Lam DMH, Wong SSC, Shiu HHC, Wang AXM, Cheung CW. Effects of single nucleotide polymorphisms on surgical and postsurgical opioid requirements: a systematic review and meta-analysis. Clin J Pain. 2017;33:1117–30.

    PubMed  Google Scholar 

  5. De Gregori M, Diatchenko L, Ingelmo PM, Napolioni V, Klepstad P, Belfer I, et al. Human Genetic variability contributes to postoperative morphine consumption. J Pain. 2016;17:628–36.

    PubMed  Google Scholar 

  6. Flood P, Clark D. Genetic variability in the activity of monoamines: a window into the complexity of pain. Anesth Analg. 2014;119:1032–8.

    PubMed  Google Scholar 

  7. Hwang IC, Park JY, Myung SK, Ahn HY, Fukuda K, Liao Q. OPRM1 A118G gene variant and postoperative opioid requirement: a systematic review and meta-analysis. Anesthesiology. 2014;121:825–34.

    PubMed  Google Scholar 

  8. Tan EC, Lim EC, Ocampo CE, Allen JC, Sng BL, Sia AT. Common variants of catechol-O-methyltransferase influence patient-controlled analgesia usage and postoperative pain in patients undergoing total hysterectomy. Pharm J. 2016;16:186–92.

    CAS  Google Scholar 

  9. Angst MS, Phillips NG, Drover DR, Tingle M, Ray A, Swan GE, et al. Pain sensitivity and opioid analgesia: a pharmacogenomic twin study. Pain. 2012;153:1397–409.

    PubMed  PubMed Central  Google Scholar 

  10. Somogyi AA, Sia AT, Tan EC, Coller JK, Hutchinson MR, Barratt DT. Ethnicity-dependent influence of innate immune genetic markers on morphine PCA requirements and adverse effects in postoperative pain. Pain. 2016;157:2458–66.

    CAS  PubMed  Google Scholar 

  11. Tan EC, Lim EC, Teo YY, Lim Y, Law HY, Sia AT. Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain. Mol Pain. 2009;5:32.

    PubMed  PubMed Central  Google Scholar 

  12. Jimenez N, Anderson GD, Shen DD, Nielsen SS, Farin FM, Seidel K, et al. Is ethnicity associated with morphine's side effects in children? Morphine pharmacokinetics, analgesic response, and side effects in children having tonsillectomy. Paediatr Anaesth. 2012;22:669–75.

    PubMed  PubMed Central  Google Scholar 

  13. Mamie C, Rebsamen MC, Morris MA, Morabia A. First evidence of a polygenic susceptibility to pain in a pediatric cohort. Anesth Analg. 2013;116:170–7.

    CAS  PubMed  Google Scholar 

  14. Cook-Sather SD, Li J, Goebel TK, Sussman EM, Rehman MA, Hakonarson H. TAOK3, a novel genome-wide association study locus associated with morphine requirement and postoperative pain in a retrospective pediatric day surgery population. Pain. 2014;155:1773–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet. 2010;87:139–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Grömping E. Relative importance for linear regression in R: the package relaimpo. J Stat Softw. 2006;17:1–27.

    Google Scholar 

  18. Bruehl S, Denton JS, Lonergan D, Koran ME, Chont M, Sobey C, et al. Associations between KCNJ6 (GIRK2) gene polymorphisms and pain-related phenotypes. Pain. 2013;154:2853–9.

    CAS  PubMed  Google Scholar 

  19. Kim H, Neubert JK, San Miguel A, Xu K, Krishnaraju RK, Iadarola MJ, et al. Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain. 2004;109:488–96.

    PubMed  Google Scholar 

  20. Shabalina SA, Zaykin DV, Gris P, Ogurtsov AY, Gauthier J, Shibata K, et al. Expansion of the human mu-opioid receptor gene architecture: novel functional variants. Hum Mol Genet. 2009;18:1037–51.

    CAS  PubMed  Google Scholar 

  21. Klepstad P, Fladvad T, Skorpen F, Bjordal K, Caraceni A, Dale O, et al. Influence from genetic variability on opioid use for cancer pain: a European genetic association study of 2294 cancer pain patients. Pain. 2011;152:1139–45.

    CAS  PubMed  Google Scholar 

  22. Candiotti K, Yang Z, Xue L, Zhang Y, Rodriguez Y, Wang L, et al. Single-nucleotide polymorphism C3435T in the ABCB1 gene is associated with opioid consumption in postoperative pain. Pain Med. 2013;14:1977–84.

    PubMed  Google Scholar 

  23. Bastami S, Gupta A, Zackrisson AL, Ahlner J, Osman A, Uppugunduri S. Influence of UGT2B7, OPRM1 and ABCB1 gene polymorphisms on postoperative morphine consumption. Basic Clin Pharmacol Toxicol. 2014;115:423–31.

    CAS  PubMed  Google Scholar 

  24. Horvat CM, Au AK, Conley YP, Kochanek PM, Li L, Poloyac SM, et al. ABCB1 genotype is associated with fentanyl requirements in critically ill children. Pediatr Res. 2017;82:29–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dezambazovska-Trajkovska V, Nojkov J, Kartalov A, Kuzmanovska B, Spiroska T, Seljmani R, et al. Association of single nucleotide polymorphism C3435T in the ABCB1 gene with opioid sensitivity in treatment of postoperaetive pain. Prilozi. 2016;37:73–80.

    Google Scholar 

  26. Coulbault L, Beaussier M, Verstuyft C, Weickmans H, Dubert L, Tregouet D, et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin Pharmacol Ther. 2006;79:316–24.

    CAS  PubMed  Google Scholar 

  27. Nielsen LM, Sverrisdottir E, Stage TB, Feddersen S, Brosen K, Christrup LL, et al. Lack of genetic association between OCT1, ABCB1, and UGT2B7 variants and morphine pharmacokinetics. Eur J Pharm Sci. 2017;99:337–42.

    CAS  PubMed  Google Scholar 

  28. Sadhasivam S, Chidambaran V, Zhang X, Meller J, Esslinger H, Zhang K, et al. Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics. Pharm J. 2015;15:119–26.

    CAS  Google Scholar 

  29. Pauli-Magnus C, Kroetz DL. Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1). Pharm Res. 2004;21:904–13.

    CAS  PubMed  Google Scholar 

  30. Kasai S, Ikeda K. Pharmacogenomics of the human micro-opioid receptor. Pharmacogenomics. 2011;12:1305–20.

    CAS  PubMed  Google Scholar 

  31. Knapman A, Connor M. Cellular signalling of non-synonymous single-nucleotide polymorphisms of the human mu-opioid receptor (OPRM1). Br J Pharmacol. 2015;172:349–63.

    CAS  PubMed  Google Scholar 

  32. Chou WY, Wang CH, Liu PH, Liu CC, Tseng CC, Jawan B. Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology. 2006;105:334–7.

    CAS  PubMed  Google Scholar 

  33. Chou WY, Yang LC, Lu HF, Ko JY, Wang CH, Lin SH, et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand. 2006;50:787–92.

    CAS  PubMed  Google Scholar 

  34. Janicki PK, Schuler G, Francis D, Bohr A, Gordin V, Jarzembowski T, et al. A genetic association study of the functional A118G polymorphism of the human mu-opioid receptor gene in patients with acute and chronic pain. Anesth Analg. 2006;103:1011–7.

    CAS  PubMed  Google Scholar 

  35. Sia AT, Lim Y, Lim EC, Goh RW, Law HY, Landau R, et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology. 2008;109:520–6.

    CAS  PubMed  Google Scholar 

  36. Sia AT, Lim Y, Lim EC, Ocampo CE, Lim WY, Cheong P, et al. Influence of mu-opioid receptor variant on morphine use and self-rated pain following abdominal hysterectomy. J Pain. 2013;14:1045–52.

    CAS  PubMed  Google Scholar 

  37. Weiskopf JS, Pan XY, Marcovitz J, Tuttle AH, Majumdar S, Pidakala J, et al. Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene. Pain. 2014;155:2063–70.

    Google Scholar 

  38. Hastie BA, Riley JL 3rd, Kaplan L, Herrera DG, Campbell CM, Virtusio K, et al. Ethnicity interacts with the OPRM1 gene in experimental pain sensitivity. Pain. 2012;153:1610–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cook-Sather SD, Li J, Hakonarson H. Pain versus analgesia: TAOK3 as a pharmacogene. Pain. 2017;158:1622–3.

    PubMed  PubMed Central  Google Scholar 

  40. Belfer I, Young EE, Diatchenko L. Letting the gene out of the bottle: OPRM1 interactions. Anesthesiology. 2014;121:678–80.

    PubMed  Google Scholar 

  41. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 1999;286:2495–8.

    CAS  PubMed  Google Scholar 

  42. Bu H, Liu X, Tian X, Yang H, Gao F. Enhancement of morphine analgesia and prevention of morphine tolerance by downregulation of beta-arrestin 2 with antigene RNAs in mice. Int J Neurosci. 2015;125:56–65.

    CAS  PubMed  Google Scholar 

  43. Ross JR, Rutter D, Welsh K, Joel SP, Goller K, Wells AU, et al. Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharm J. 2005;5:324–36.

    CAS  Google Scholar 

  44. Storm H, Stoen R, Klepstad P, Skorpen F, Qvigstad E, Raeder J. Nociceptive stimuli responses at different levels of general anaesthesia and genetic variability. Acta Anaesthesiol Scand. 2013;57:89–99.

    CAS  PubMed  Google Scholar 

  45. Oneda B, Crettol S, Bochud M, Besson J, Croquette-Krokar M, Hammig R, et al. beta-Arrestin2 influences the response to methadone in opioid-dependent patients. Pharm J. 2011;11:258–66.

    CAS  Google Scholar 

  46. Kim H, Lee H, Rowan J, Brahim J, Dionne RA. Genetic polymorphisms in monoamine neurotransmittor systems show only weak association with acute post-surgical pain in humans. Mol Pain. 2006;2:24.

    PubMed  PubMed Central  Google Scholar 

  47. De Gregori M, Garbin G, De Gregori S, Minella CE, Bugada D, Lisa A, et al. Genetic variability at COMT but not at OPRM1 and UGT2B7 loci modulates morphine analgesic response in acute postoperative pain. Eur J Clin Pharmacol. 2013;69:1651–8.

    PubMed  Google Scholar 

  48. Nielsen LM, Christrup LL, Sato H, Drewes AM, Olesen AE. Genetic influences of OPRM1, OPRD1 and COMT on morphine analgesia in a multi-modal, multi-tissue human experimental pain model. Basic Clin Pharmacol Toxicol. 2017;121:6–12.

    CAS  PubMed  Google Scholar 

  49. Sadhasivam S, Chidambaran V, Olbrecht VA, Esslinger HR, Zhang K, Zhang X, et al. Genetics of pain perception, COMT and postoperative pain management in children. Pharmacogenomics. 2014;15:277–84.

    CAS  PubMed  Google Scholar 

  50. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science. 2006;314:1930–3.

    CAS  PubMed  Google Scholar 

  51. Kolesnikov Y, Gabovits B, Levin A, Voiko E, Veske A. Combined catechol-O-methyltransferase and mu-opioid receptor gene polymorphisms affect morphine postoperative analgesia and central side effects. Anesth Analg. 2011;112:448–53.

    CAS  PubMed  Google Scholar 

  52. Smith SB, Reenila I, Mannisto PT, Slade GD, Maixner W, Diatchenko L, et al. Epistasis between polymorphisms in COMT, ESR1, and GCH1 influences COMT enzyme activity and pain. Pain. 2014;155:2390–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang F, Tong J, Hu J, Zhang H, Ouyang W, Huang D, et al. COMT gene haplotypes are closely associated with postoperative fentanyl dose in patients. Anesth Analg. 2015;120:933–40.

    PubMed  Google Scholar 

  54. Mukherjee N, Kidd KK, Pakstis AJ, Speed WC, Li H, Tarnok Z, et al. The complex global pattern of genetic variation and linkage disequilibrium at catechol-O-methyltransferase. Mol Psychiatry. 2010;15:216–25.

    CAS  PubMed  Google Scholar 

  55. Marker CL, Cintora SC, Roman MI, Stoffel M, Wickman K. Hyperalgesia and blunted morphine analgesia in G protein-gated potassium channel subunit knockout mice. Neuroreport. 2002;13:2509–13.

    CAS  PubMed  Google Scholar 

  56. Marker CL, Stoffel M, Wickman K. Spinal G-protein-gated K+ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. J Neurosci. 2004;24:2806–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nockemann D, Rouault M, Labuz D, Hublitz P, McKnelly K, Reis FC, et al. The K(+) channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia. EMBO Mol Med. 2013;5:1263–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Elens L, Norman E, Matic M, Rane A, Fellman V, van Schaik RH. Genetic predisposition to poor opioid response in preterm infants: impact of KCNJ6 and COMT polymorphisms on pain relief after endotracheal intubation. Ther Drug Monit. 2016;38:525–33.

    CAS  PubMed  Google Scholar 

  59. Zou F, Chai HS, Younkin CS, Allen M, Crook J, Pankratz VS, et al. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet. 2012;8:e1002707.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Campa D, Gioia A, Tomei A, Poli P, Barale R. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther. 2008;83:559–66.

    CAS  PubMed  Google Scholar 

  61. Li YR, Zhao SD, Li J, Bradfield JP, Mohebnasab M, Steel L, et al. Genetic sharing and heritability of paediatric age of onset autoimmune diseases. Nat Commun. 2015;6:8442.

    CAS  PubMed  Google Scholar 

  62. Kantor DB, Palmer CD, Young TR, Meng Y, Gajdos ZK, Lyon H, et al. Replication and fine mapping of asthma-associated loci in individuals of African ancestry. Hum Genet. 2013;132:1039–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gutteridge T, Kumaran M, Ghosh S, Fainsinger R, Klepstad P, Tarumi Y, et al. Single nucleotide polymorphisms in TAOK3 are associated with high opioid requirement for pain management in patients with advanced cancer admitted to a tertiary palliative care unit. J Pain Symptom Manag. 2018;56:560–5.

    Google Scholar 

  64. Hamabe W, Maeda T, Kiguchi N, Yamamoto C, Tokuyama S, Kishioka S. Negative relationship between morphine analgesia and P-glycoprotein expression levels in the brain. J Pharmacol Sci. 2007;105:353–60.

    CAS  PubMed  Google Scholar 

  65. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. King MA, Su W, Chang AH, Zuckerman A, Pasternak GW. Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci. 2001;4:268–74.

    CAS  PubMed  Google Scholar 

  67. Thompson SJ, Koszdin K, Bernards CM. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology. 2000;92:1392–9.

    CAS  PubMed  Google Scholar 

  68. Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002;96:913–20.

    CAS  PubMed  Google Scholar 

  69. Groer CE, Schmid CL, Jaeger AM, Bohn LM. Agonist-directed interactions with specific beta-arrestins determine mu-opioid receptor trafficking, ubiquitination, and dephosphorylation. J Biol Chem. 2011;286:31731–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mittal N, Tan M, Egbuta O, Desai N, Crawford C, Xie CW, et al. Evidence that behavioral phenotypes of morphine in ß-arr2-/- mice are due to the unmasking of JNK signaling. Neuropsychopharmacology. 2012;37:1953–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ahlers SJ, Elens LL, van Gulik L, van Schaik RH, van Dongen EP, Bruins P, et al. The val158met polymorphism of the COMT gene is associated with increased pain sensitivity in morphine-treated patients undergoing a painful procedure after cardiac surgery. Br J Clin Pharmacol. 2013;75:1506–15.

    CAS  PubMed  Google Scholar 

  72. Belfer I, Segall SK, Lariviere WR, Smith SB, Dai F, Slade GD, et al. Pain modality- and sex-specific effects of COMT functional variants. Pain. 2013;154:1368–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Henker RA, Lewis A, Dai F, Lariviere WR, Meng L, Gruen GS, et al. The associations between OPRM1 and COMT genotypes and postoperative pain, opioid use, and opioid-induced sedation. Biol Res Nurs. 2013;15:309–17.

    CAS  PubMed  Google Scholar 

  74. Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, et al. COMT val158met genotype affects µ-opioid neurotransmitter responses to a pain stressor. Science. 2003;299:1240–3.

    CAS  PubMed  Google Scholar 

  75. Lee PJ, Delaney P, Keogh J, Sleeman D, Shorten GD. Catecholamine-O-methyltransferase polymorphisms are associated with postoperative pain intensity. Clin J Pain. 2011;27:93–101.

    CAS  PubMed  Google Scholar 

  76. Jääskeläinen SK, Lindholm P, Valmunen T, Pesonen U, Taiminen T, Virtanen A, et al. Variation in the dopamine D2 receptor gene plays a key role in human pain and its modulation by transcranial magnetic stimulation. Pain. 2014;155:2180–7.

    PubMed  Google Scholar 

  77. Hnasko TS, Sotak BN, Palmiter RD. Morphine reward in dopamine-deficient mice. Nature. 2005;438:854–7.

    CAS  PubMed  Google Scholar 

  78. King MA, Bradshaw S, Chang AH, Pintar JE, Pasternak GW. Potentiation of opioid analgesia in dopamine2 receptor knock-out mice: evidence for a tonically active anti-opioid system. J Neurosci. 2001;21:7788–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nishizawa D, Nagashima M, Katoh R, Satoh Y, Tagami M, Kasai S, et al. Association between KCNJ6 (GIRK2) gene polymorphisms and postoperative analgesic requirements after major abdominal surgery. PLoS ONE. 2009;4:e7060.

    PubMed  PubMed Central  Google Scholar 

  80. Nishizawa D, Fukuda K, Kasai S, Ogai Y, Hasegawa J, Sato N, et al. Association between KCNJ6 (GIRK2) gene polymorphism rs2835859 and postoperative analgesia, pain sensitivity, and nicotine dependence. J Pharmacol Sci. 2014;126:253–63.

    CAS  PubMed  Google Scholar 

  81. Ikeda K, Kobayashi T, Kumanishi T, Niki H, Yano R. Involvement of G-protein-activated inwardly rectifying K (GIRK) channels in opioid-induced analgesia. Neurosci Res. 2000;38:113–6.

    CAS  PubMed  Google Scholar 

  82. Mitrovic I, Margeta-Mitrovic M, Bader S, Stoffel M, Jan LY, Basbaum AI. Contribution of GIRK2-mediated postsynaptic signaling to opiate and alpha 2-adrenergic analgesia and analgesic sex differences. Proc Natl Acad Sci USA. 2003;100:271–6.

    CAS  PubMed  Google Scholar 

  83. Torrecilla M, Marker CL, Cintora SC, Stoffel M, Williams JT, Wickman K. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J Neurosci. 2002;22:4328–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mogil JS, Ritchie J, Smith SB, Strasburg K, Kaplan L, Wallace MR, et al. Melanocortin-1 receptor gene variants affect pain and µ-opioid analgesia in mice and humans. J Med Genet. 2005;42:583–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Delaney A, Keighren M, Fleetwood-Walker SM, Jackson IJ. Involvement of the melanocortin-1 receptor in acute pain and pain of inflammatory but not neuropathic origin. PLoS ONE. 2010;5:e12498.

    PubMed  PubMed Central  Google Scholar 

  86. Mogil JS, Wilson SG, Chesler EJ, Rankin AL, Nemmani KV, Lariviere WR, et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc Natl Acad Sci USA. 2003;100:4867–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Leskelä TT, Lackman JJ, Vierimaa MM, Kobayashi H, Bouvier M, Petäjä-Repo UE. Cys-27 variant of human delta-opioid receptor modulates maturation and cell surface delivery of Phe-27 variant via heteromerization. J Biol Chem. 2012;287:5008–20.

    PubMed  Google Scholar 

  88. Mogil JS, Richards SP, O’Toole LA, Helms ML, Mitchell SR, Belknap JK. Genetic sensitivity to hot-plate nociception in DBA/2J and C57BL/6J inbred mouse strains: possible sex-specific mediation by delta2-opioid receptors. Pain. 1997;70:267–77.

    CAS  PubMed  Google Scholar 

  89. Tuusa JT, Petäjä-Repo UE. Phe27Cys polymorphism of the human delta opioid receptor predisposes cells to compromised calcium signaling. Mol Cell Biochem. 2011;351:173–81.

    CAS  PubMed  Google Scholar 

  90. Zhang H, Gelernter J, Gruen JR, Kranzler HR, Herman AI, Simen AA. Functional impact of a single-nucleotide polymorphism in the OPRD1 promoter region. J Hum Genet. 2010;55:278–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu Y, King MA, Schuller AG, Nitsche RF, Reidl M, Elde RP, et al. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in d opioid receptor knockout mice. Neuron. 1999;24:243–52.

    CAS  PubMed  Google Scholar 

  92. Huang CJ, Liu HF, Su NY, Hsu YW, Yang CH, Chen CC, et al. Association between human opioid receptor genes polymorphisms and pressure pain sensitivity in females. Anaesthesia. 2008;63:1288–95.

    CAS  PubMed  Google Scholar 

  93. Romberg RR, Olofsen E, Bijl H, Taschner PE, Teppema LJ, Sarton EY, et al. Polymorphism of mu-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology. 2005;102:522–30.

    CAS  PubMed  Google Scholar 

  94. Walter C, Lötsch J. Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain. 2009;146:270–5.

    CAS  PubMed  Google Scholar 

  95. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL. A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem. 2001;276:3130–7.

    CAS  PubMed  Google Scholar 

  96. Huang P, Chen C, Mague SD, Blendy JA, Liu-Chen LY. A common single nucleotide polymorphism A118G of the µ opioid receptor alters its N-glycosylation and protein stability. Biochem J. 2012;441:379–86.

    CAS  PubMed  Google Scholar 

  97. Mague SD, Isiegas C, Huang P, Liu-Chen LY, Lerman C, Blendy JA. Mouse model of OPRM1 (A118G) polymorphism has sex-specific effects on drug-mediated behavior. Proc Natl Acad Sci USA. 2009;106:10847–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mahmoud S, Thorsell A, Sommer WH, Heilig M, Holgate JK, Bartlett SE, et al. Pharmacological consequence of the A118G µ opioid receptor polymorphism on morphine- and fentanyl-mediated modulation of Ca2+ channels in humanized mouse sensory neurons. Anesthesiology. 2011;115:1054–62.

    CAS  PubMed  Google Scholar 

  99. Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid receptor gene. Nature. 1996;383:819–23.

    CAS  PubMed  Google Scholar 

  100. Oertel BG, Doehring A, Roskam B, Kettner M, Hackmann N, Ferreirós N, et al. Genetic-epigenetic interaction modulates µ-opioid receptor regulation. Hum Mol Genet. 2012;21:4751–60.

    CAS  PubMed  Google Scholar 

  101. Ravindranathan A, Joslyn G, Robertson M, Schuckit MA, Whistler JL, White RL. Functional characterization of human variants of the mu-opioid receptor gene. Proc Natl Acad Sci USA. 2009;106:10811–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, et al. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA. 1997;94:1544–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu J, Xu M, Rossi GC, Pasternak GW, Pan YX. Identification and characterization of seven new exon 11-associated splice variants of the rat µ opioid receptor gene, OPRM1. Mol Pain. 2011;7:9.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sawyer MB, Innocenti F, Das S, Cheng C, Ramírez J, Pantle-Fisher FH, et al. A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin Pharmacol Ther. 2003;73:566–74.

    CAS  PubMed  Google Scholar 

  105. Innocenti F, Liu W, Fackenthal D, Ramírez J, Chen P, Ye X, et al. Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharm Genom. 2008;18:683–97.

    CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the Department of Anesthesiology and Critical Care Medicine through Children’s Anesthesia Associates, Ltd. (Philadelphia, PA, USA) and by The Children’s Hospital of Philadelphia (Philadelphia, PA, USA) through a grant from its Institutional Development Fund to The Center for Applied Genomics. Dr. Hakonarson is a recipient of funding from the National Institutes of Health, NHGRI eMERGE grant U01HG006830. A portion of this work was presented by Dr. Li at the October 2018 annual meeting of the American Society of Human Genetics in San Diego, CA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Cook-Sather.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wei, Z., Zhang, J. et al. Candidate gene analyses for acute pain and morphine analgesia after pediatric day surgery: African American versus European Caucasian ancestry and dose prediction limits. Pharmacogenomics J 19, 570–581 (2019). https://doi.org/10.1038/s41397-019-0074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0074-4

This article is cited by

Search

Quick links