Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ubiquitin-specific protease 54 regulates GLUT1-mediated aerobic glycolysis to inhibit lung adenocarcinoma progression by modifying p53 degradation

Abstract

Lung adenocarcinoma (LUAD) is one of the most prevalent types of cancer. Ubiquitination is crucial in modulating cell proliferation and aerobic glycolysis in cancer. The frequency of TP53 mutations in LUAD is approximately 50%. Currently, therapeutic targets for wild-type (WT) p53-expressing LUAD are limited. In the present study, we systemically explored the expression of ubiquitin-specific protease genes using public datasets. Then, we focused on ubiquitin-specific protease 54 (USP54), and explored its prognostic significance in LUAD patients using public datasets, analyses, and an independent cohort from our center. We found that the expression of USP54 was lower in LUAD tissues compared with that in the paracancerous tissues. Low USP54 expression levels were linked to a malignant phenotype and worse survival in patients with LUAD. The results of functional experiments revealed that up-regulation of USP54 suppressed LUAD cell proliferation in vivo and in vitro. USP54 directly interacted with p53 protein and the levels of ubiquitinated p53 were inversely related to USP54 levels, consistent with a role of USP54 in deubiquitinating p53 in p53-WT LUAD cells. Moreover, up-regulation of the USP54 expression inhibited aerobic glycolysis in LUAD cells. Importantly, we confirmed that USP54 inhibited aerobic glycolysis and the growth of tumor cells by a p53-mediated decrease in glucose transporter 1 (GLUT1) expression in p53-WT LUAD cells. Altogether, we determined a novel mechanism of survival in the p53-WT LUAD cells to endure the malnourished tumor microenvironment and provided insights into the role of USP54 in the adaptation of p53-WT LUAD cells to metabolic stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comprehensive analysis of the ubiquitin-specific protease genes in lung adenocarcinoma.
Fig. 2: Relative USP54 expression in lung adenocarcinoma and its clinical significance.
Fig. 3: USP54 inhibits the growth of lung adenocarcinoma cells in vitro and in vivo.
Fig. 4: USP54 increases p53 protein concentrations and USP54 directly interacts with p53 in the p53-WT lung adenocarcinoma cells.
Fig. 5: USP54 increases p53 protein concentrations by inhibiting the ubiquitination and degradation of p53 in p53-wild type lung adenocarcinoma cells.
Fig. 6: USP54 inhibits aerobic glycolysis and promotes mitochondrial respiration in the LUAD cells.
Fig. 7: USP54 inhibits tumor cell growth and aerobic glycolysis by decreasing GLUT1 expression via p53 in lung adenocarcinoma cells.
Fig. 8: A model summarizing the role of USP54 in LUAD.

Similar content being viewed by others

Data availability

All data analyzed or generated in this study are included in this manuscript for publication. Other datasets used or analyzed (or both) in this study can be obtained from the corresponding authors upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Succony L, Rassl DM, Barker AP, McCaughan FM, Rintoul RC. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat Rev. 2021;99:102237.

    Article  CAS  PubMed  Google Scholar 

  3. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398:535–54.

    Article  PubMed  Google Scholar 

  4. Schonenberger MJ, Kovacs WJ. Hypoxia signaling pathways: modulators of oxygen-related organelles. Front Cell Dev Biol. 2015;3:42.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nagao A, Kobayashi M, Koyasu S, Chow CCT, Harada H. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance. Int J Mol Sci. 2019;20:238.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bartrons R, Simon-Molas H, Rodriguez-Garcia A, Castano E, Navarro-Sabate A, Manzano A, et al. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol. 2018;8:331.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen L, Yuan R, Wen C, Liu T, Feng Q, Deng X, et al. E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by downregulating FBP1 via destabilization of C/EBPalpha. Oncogene. 2021;40:262–76.

    Article  CAS  PubMed  Google Scholar 

  8. Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, et al. Tumor-Associated Macrophages Enhance Tumor Hypoxia and Aerobic Glycolysis. Cancer Res. 2019;79:795–806.

    Article  CAS  PubMed  Google Scholar 

  9. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018;18:89–102.

    Article  CAS  PubMed  Google Scholar 

  10. Budanov AV. The role of tumor suppressor p53 in the antioxidant defense and metabolism. Subcell Biochem. 2014;85:337–58.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 2020;12:674–87.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou X, Hao Q, Lu H. Mutant p53 in cancer therapy-the barrier or the path. J Mol Cell Biol. 2019;11:293–305.

    Article  CAS  PubMed  Google Scholar 

  13. Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 2023;22:127–44.

    Article  CAS  PubMed  Google Scholar 

  14. Xie Y, Wang M, Xia M, Guo Y, Zu X, Zhong J. Ubiquitination regulation of aerobic glycolysis in cancer. Life Sci. 2022;292:120322.

    Article  CAS  PubMed  Google Scholar 

  15. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29.

    Article  CAS  PubMed  Google Scholar 

  16. Damgaard RB. The ubiquitin system: from cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ. 2021;28:423–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Asano Y, Matsumoto Y, Wada J, Rottapel R. E3-ubiquitin ligases and recent progress in osteoimmunology. Front Immunol. 2023;14:1120710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cruz L, Soares P, Correia M. Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals. 2021;14:848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov. 2018;17:57–78.

    Article  CAS  PubMed  Google Scholar 

  20. Philipson EH, Kuhnert BR, Pimentel R, Amini SB. Transient maternal hypotension following epidural anesthesia. Anesth Analg. 1989;69:604–7.

    Article  CAS  PubMed  Google Scholar 

  21. Zhong M, Jiang Q, Jin R. USP4 expression independently predicts favorable survival in lung adenocarcinoma. IUBMB Life. 2018;70:670–7.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Xia S, Li H, Wang X, Li C, Chao Y, et al. The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ. 2020;27:1747–64.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao X, Wu X, Wang H, Yu H, Wang J. USP53 promotes apoptosis and inhibits glycolysis in lung adenocarcinoma through FKBP51-AKT1 signaling. Mol Carcinog. 2020;59:1000–1011.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao M, Xin XF, Zhang JY, Dai W, Lv TF, Song Y. LncRNA GMDS-AS1 inhibits lung adenocarcinoma development by regulating miR-96-5p/CYLD signaling. Cancer Med. 2020;9:1196–1208.

    Article  CAS  PubMed  Google Scholar 

  25. Park HB, Hwang S, Baek KH. USP7 regulates the ERK1/2 signaling pathway through deubiquitinating Raf-1 in lung adenocarcinoma. Cell Death Dis. 2022;13:698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim Y, Shiba-Ishii A, Nakagawa T, Husni RE, Sakashita S, Takeuchi T, et al. Ubiquitin-specific protease 8 is a novel prognostic marker in early-stage lung adenocarcinoma. Pathol Int. 2017;67:292–301.

    Article  CAS  PubMed  Google Scholar 

  27. Han B, Sun Y, Yang D, Zhang H, Mo S, Chen X, et al. USP22 promotes development of lung adenocarcinoma through ubiquitination and immunosuppression. Aging. 2020;12:6990–7005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu Y, Zhang Y, Wang D, Zhang Y, Zhang J, Zhang Y, et al. USP29 enhances chemotherapy-induced stemness in non-small cell lung cancer via stabilizing Snail1 in response to oxidative stress. Cell Death Dis. 2020;11:796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pan J, Deng Q, Jiang C, Wang X, Niu T, Li H, et al. USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer. Oncogene. 2015;34:3957–67.

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Xiao X, Wang H, Wang W, Ou Y, Wang Z, et al. CDK4/6-USP51 axis regulates lung adenocarcinoma metastasis through ZEB1. Cancer Gene Ther. 2022;29:1181–92.

    Article  CAS  PubMed  Google Scholar 

  31. Fraile JM, Campos-Iglesias D, Rodriguez F, Espanol Y, Freije JM. The deubiquitinase USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis. Oncotarget. 2016;7:74427–34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang C, Ma X, Wei G, Zhu X, Hu P, Chen X, et al. Centrosomal protein 120 promotes centrosome amplification and gastric cancer progression via USP54-mediated deubiquitination of PLK4. iScience. 2023;26:105745.

    Article  CAS  PubMed  Google Scholar 

  33. Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res. 2014;74:4955–66.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao LY, Song J, Liu Y, Song CX, Yi C. Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 2020;11:792–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: Moving forward. PLoS Genet. 2018;14:e1007362.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol. 2022;85:4–32.

    Article  CAS  PubMed  Google Scholar 

  37. Li Q, Qin Y, Wei P, Lian P, Li Y, Xu Y, et al. Gas1 Inhibits Metastatic and Metabolic Phenotypes in Colorectal Carcinoma. Mol Cancer Res. 2016;14:830–40.

    Article  CAS  PubMed  Google Scholar 

  38. Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 2022;21:141–62.

    Article  CAS  PubMed  Google Scholar 

  39. Xiao H, Wang J, Yan W, Cui Y, Chen Z, Gao X, et al. GLUT1 regulates cell glycolysis and proliferation in prostate cancer. Prostate. 2018;78:86–94.

    Article  CAS  PubMed  Google Scholar 

  40. Ohnishi T, Kusuyama J, Bandow K, Matsuguchi T. Glut1 expression is increased by p53 reduction to switch metabolism to glycolysis during osteoblast differentiation. Biochem J. 2020;477:1795–1811.

    Article  CAS  PubMed  Google Scholar 

  41. Chen J, Fu Y, Hu J, He J. Hypoxia-related gene signature for predicting LUAD patients’ prognosis and immune microenvironment. Cytokine. 2022;152:155820.

    Article  CAS  PubMed  Google Scholar 

  42. Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020;20:25–39.

    Article  CAS  PubMed  Google Scholar 

  43. Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021;27:1345–56.

    Article  CAS  PubMed  Google Scholar 

  44. Torres F, Kiwi M, Schuller IK. The impact of the suppression of highly connected protein interactions on the corona virus infection. Sci Rep. 2022;12:9188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lane AN, Higashi RM, Fan TW. Metabolic reprogramming in tumors: Contributions of the tumor microenvironment. Genes Dis. 2020;7:185–98.

    Article  CAS  PubMed  Google Scholar 

  46. Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines. 2020;8:270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang X, Wang Z, Huang R, Lu Z, Chen X, Huang D. UPP1 Promotes Lung Adenocarcinoma Progression through Epigenetic Regulation of Glycolysis. Aging Dis. 2022;13:1488–1503.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tan Q, Duan L, Huang Q, Chen W, Yang Z, Chen J, et al. Interleukin -1beta Promotes Lung Adenocarcinoma Growth and Invasion Through Promoting Glycolysis via p38 Pathway. J Inflamm Res. 2021;14:6491–6509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aubrey BJ, Strasser A, Kelly GL. Tumor-Suppressor Functions of the TP53 Pathway. Cold Spring Harb Perspect Med. 2016;6:a026062.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li J, Qu P, Zhou XZ, Ji YX, Yuan S, Liu SP, et al. Pimozide inhibits the growth of breast cancer cells by alleviating the Warburg effect through the P53 signaling pathway. Biomed Pharmacother. 2022;150:113063.

    Article  CAS  PubMed  Google Scholar 

  51. Ponnusamy L, Manoharan R. Distinctive role of SIK1 and SIK3 isoforms in aerobic glycolysis and cell growth of breast cancer through the regulation of p53 and mTOR signaling pathways. Biochim Biophys Acta Mol Cell Res. 2021;1868:118975.

    Article  CAS  PubMed  Google Scholar 

  52. Itahana Y, Itahana K. Emerging Roles of p53 Family Members in Glucose Metabolism. Int J Mol Sci. 2018;19:776.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G. Mitochondrial liaisons of p53. Antioxid Redox Signal. 2011;15:1691–1714.

    Article  CAS  PubMed  Google Scholar 

  54. Koch H, Weber YG. The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav. 2019;91:90–3.

    Article  PubMed  Google Scholar 

  55. Zhao X, Lu C, Chu W, Zhang B, Zhen Q, Wang R, et al. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol. 2017;39:1010428317706215.

    Article  PubMed  Google Scholar 

  56. Ito R, Yashiro M, Tsukioka T, Izumi N, Komatsu H, Inoue H, et al. GLUT1 and PKM2 may be useful prognostic predictors in patients with non‑small cell lung cancer following curative R0 resection. Oncol Lett. 2023;25:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64:2627–33.

    Article  CAS  PubMed  Google Scholar 

  58. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baine MK, Hsieh MS, Lai WV, Egger JV, Jungbluth AA, Daneshbod Y, et al. SCLC Subtypes Defined by ASCL1, NEUROD1, POU2F3, and YAP1: A Comprehensive Immunohistochemical and Histopathologic Characterization. J Thorac Oncol. 2020;15:1823–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang W, Shao F, Yang X, Wang J, Zhu R, Yang Y, et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N(6)-methyladenosine-dependent YTHDF binding. Nat Commun. 2021;12:3803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu D, Yu J, Yang Y, Du Y, Lu H, Zhang S, et al. RBX1 regulates PKM alternative splicing to facilitate anaplastic thyroid carcinoma metastasis and aerobic glycolysis by destroying the SMAR1/HDAC6 complex. Cell Biosci. 2023;13:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu J, Zhao J, Luo C, Zhu Z, Peng X, Zhu X, et al. FAT10 promotes chemotherapeutic resistance in pancreatic cancer by inducing epithelial-mesenchymal transition via stabilization of FOXM1 expression. Cell Death Dis. 2022;13:497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang L, Lin W, Zhou Y, Shao F, Gao Y, He J. A Complement-Related Gene Signature for Predicting Overall Survival and Immunotherapy Efficacy in Sarcoma Patients. Front Cell Dev Biol. 2022;10:765062.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang L, Cai J, Zhao X, Ma L, Zeng P, Zhou L, et al. Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Mol Cell. 2023;83:281–97.e210

    Article  CAS  PubMed  Google Scholar 

  65. Wang Z, Sun Y, Lou F, Bai J, Zhou H, Cai X, et al. Targeting the transcription factor HES1 by L-menthol restores protein phosphatase 6 in keratinocytes in models of psoriasis. Nat Commun. 2022;13:7815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu Z, Shao J, Zheng C, Cai J, Li B, Peng X, et al. The E3 ubiquitin ligase RBCK1 promotes the invasion and metastasis of hepatocellular carcinoma by destroying the PPARgamma/PGC1alpha complex. Am J Cancer Res. 2022;12:1372–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu X, Chen L, Ge J, Yan C, Huang Z, Hu J, et al. The Ubiquitin-like Protein FAT10 Stabilizes eEF1A1 Expression to Promote Tumor Proliferation in a Complex Manner. Cancer Res. 2016;76:4897–4907.

    Article  CAS  PubMed  Google Scholar 

  68. Chen L, Xu Z, Li Q, Feng Q, Zheng C, Du Y, et al. USP28 facilitates pancreatic cancer progression through activation of Wnt/beta-catenin pathway via stabilising FOXM1. Cell Death Dis. 2021;12:887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan J, Lei J, Chen L, Deng H, Dong D, Jin T, et al. Human Leukocyte Antigen F Locus Adjacent Transcript 10 Overexpression Disturbs WISP1 Protein and mRNA Expression to Promote Hepatocellular Carcinoma Progression. Hepatology. 2018;68:2268–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the work staff from the biobank and pathology department of Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College for providing samples.

Funding

This work was supported by the National Key R&D Program of China (2021YFF1201300), National Natural Science Foundation of China (82122053, 82188102), Natural Science Foundation of Jiangxi Province (20212BCJ23022), R&D Program of Beijing Municipal Education Commission (KJZD20191002302), CAMS Initiative for Innovative Medicine (2021-I2M-1-012, 2022-I2M-2-001), Key-Area Research and Development Program of Guangdong Province (2021B0101420005), Shenzhen Science and Technology Program (ZDSYS20220606101604009, RCJC20221008092811025, KCXFZ20201221173008022), Shenzhen High-level Hospital Construction Fund (CFA202201001, SZ2020ZD001), Shenzhen Clinical Research Center for Cancer (No.〔2021〕287), and Sanming Project of Medicine in Shenzhen (SZSM202211011).

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have contributed intellectually, directly, and substantially to this research and are authorized to publish it. Conception and design: LC and YG. Performing the experiments: LC and LZ. Provision of study materials or patients: LZ, ZY and FS. Analysis and interpretation of data: LC and HH. Writing and reviewing the manuscript: LC, LZ and YG. Supervision: YG and JH. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yibo Gao or Jie He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Human tissues were used in accordance with the guidelines of the Declaration of Helsinki, and informed consent was waived by the Independent Ethics Committee of Cancer Hospital, Chinese Academy of Medical Sciences, considering the retrospective nature of the study. The approval to use these samples for further analysis was also obtained from the same committee. Animal experiments were approved by the same committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, L., He, H. et al. Ubiquitin-specific protease 54 regulates GLUT1-mediated aerobic glycolysis to inhibit lung adenocarcinoma progression by modifying p53 degradation. Oncogene (2024). https://doi.org/10.1038/s41388-024-03047-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03047-8

Search

Quick links