Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

COL5A1 promotes triple-negative breast cancer progression by activating tumor cell-macrophage crosstalk

Abstract

Triple-negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer. Despite the recognized interplay between tumors and tumor-associated macrophages in fostering drug resistance and disease progression, the precise mechanisms leading these interactions remain elusive. Our study revealed that the upregulation of collagen type V alpha 1 (COL5A1) in TNBC tissues, particularly in chemoresistant samples, was closely linked to an unfavorable prognosis. Functional assays unequivocally demonstrated that COL5A1 played a pivotal role in fueling cancer growth, metastasis, and resistance to doxorubicin, both in vitro and in vivo. Furthermore, we found that the cytokine IL-6, produced by COL5A1-overexpressing TNBC cells actively promoted M2 macrophage polarization. In turn, TGFβ from M2 macrophages drived TNBC doxorubicin resistance through the TGFβ/Smad3/COL5A1 signaling pathway, establishing a feedback loop between TNBC cells and macrophages. Mechanistically, COL5A1 interacted with TGM2, inhibiting its K48-linked ubiquitination-mediated degradation, thereby enhancing chemoresistance and increasing IL-6 secretion. In summary, our findings underscored the significant contribution of COL5A1 upregulation to TNBC progression and chemoresistance, highlighting its potential as a diagnostic and therapeutic biomarker for TNBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elevated levels of COL5A1 correlated with chemoresistance and poor prognosis in TNBC.
Fig. 2: COL5A1 overexpression promoted resistance to doxorubicin of breast cancer cells.
Fig. 3: COL5A1 induced macrophage polarization toward an M2 phenotype through IL-6/JAK2/STAT3 signaling pathway.
Fig. 4: COL5A1 targeted TGM2 through suppressing TGM2 K48-ubiquitination to inhibit the proteasomal degradation.
Fig. 5: TGM2 knockdown partially reversed the promotion effect of COL5A1 overexpression in TNBC cells.
Fig. 6: COL5A1 overexpression TNBC-conditioned macrophage remarkably promoted the chemoresistance process through TGFβ in TNBC cells.
Fig. 7: Enforced expression of COL5A1 promoted the growth, doxorubicin resistance, and M2 macrophage polarization of breast cancer in vivo.

Similar content being viewed by others

Data availability

Source data and reagents are available from the corresponding author upon reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  3. O’Reilly EA, Gubbins L, Sharma S, Tully R, Guang MH, Weiner-Gorzel K, et al. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin. 2015;3:257–75.

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41:374–403.

    Article  PubMed  Google Scholar 

  5. Yan X, Xie Y, Yang F, Hua Y, Zeng T, Sun C, et al. Comprehensive description of the current breast cancer microenvironment advancements via single-cell analysis. J Exp Clin Cancer Res. 2021;40:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mehraj U, Dar AH, Wani NA, Mir MA. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol. 2021;87:147–58.

    Article  PubMed  Google Scholar 

  7. Allison E, Edirimanne S, Matthews J, Fuller SJ. Breast cancer survival outcomes and tumor-associated macrophage markers: a systematic review and meta-analysis. Oncol Ther. 2023;11:27–48.

    Article  PubMed  Google Scholar 

  8. Li H, Yang P, Wang J, Zhang J, Ma Q, Jiang Y, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol. 2022;15:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han D, Wang L, Long L, Su P, Luo D, Zhang H, et al. The E3 Ligase TRIM4 facilitates SET ubiquitin-mediated degradation to enhance ER-alpha action in breast cancer. Adv Sci. 2022;9:e2201701.

    Article  Google Scholar 

  10. Liu Z, Hou P, Fang J, Zhu J, Zha J, Liu R, et al. Mesenchymal stromal cells confer breast cancer doxorubicin resistance by producing hyaluronan. Oncogene. 2023;42:3221–35.

    Article  PubMed  Google Scholar 

  11. Zhao SJ, Kong FQ, Jie J, Li Q, Liu H, Xu AD, et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3beta/beta-catenin pathway. Theranostics. 2020;10:17–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han D, Wang L, Jiang S, Yang Q. The ubiquitin-proteasome system in breast cancer. Trends Mol Med. 2023;29:599–621.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Chen Z, Miranda RN, Medeiros LJ, McCarty N. TG2 and NF-kappaB signaling coordinates the survival of mantle cell lymphoma cells via IL6-mediated autophagy. Cancer Res. 2016;76:6410–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim S, Williams DW, Lee C, Kim T, Arai A, Shi S, et al. IL-36 induces bisphosphonate-related osteonecrosis of the jaw-like lesions in mice by inhibiting TGF-beta-mediated collagen expression. J Bone Miner Res. 2017;32:309–18.

    Article  PubMed  Google Scholar 

  15. Wu Q, Siddharth S, Sharma D. Triple negative breast cancer: a mountain yet to be scaled despite the triumphs. Cancers. 2021;13:3697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meredith AM, Dass CR. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol. 2016;68:729–41.

    Article  CAS  PubMed  Google Scholar 

  17. Pabalan N, Tharabenjasin P, Phababpha S, Jarjanazi H. Association of COL5A1 gene polymorphisms and risk of tendon-ligament injuries among Caucasians: a meta-analysis. Sports Med Open. 2018;4:46.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsai HF, Chang YC, Li CH, Chan MH, Chen CL, Tsai WC, et al. Type V collagen alpha 1 chain promotes the malignancy of glioblastoma through PPRC1-ESM1 axis activation and extracellular matrix remodeling. Cell Death Discov. 2021;7:313.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Liu Z, Yang X, Lu W, Chen Y, Lin Y, et al. H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics. 2021;11:1473–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu YH, Huang YF, Chang TH, Chen CC, Wu PY, Huang SC, et al. COL11A1 activates cancer-associated fibroblasts by modulating TGF-beta3 through the NF-kappaB/IGFBP2 axis in ovarian cancer cells. Oncogene. 2021;40:4503–19.

    Article  CAS  PubMed  Google Scholar 

  21. Yang M, Lu Z, Yu B, Zhao J, Li L, Zhu K, et al. COL5A1 promotes the progression of gastric cancer by acting as a ceRNA of miR-137-3p to upregulate FSTL1 expression. Cancers. 2022;14:3244.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Feng G, Ma HM, Huang HB, Li YW, Zhang P, Huang JJ, et al. Overexpression of COL5A1 promotes tumor progression and metastasis and correlates with poor survival of patients with clear cell renal cell carcinoma. Cancer Manag Res. 2019;11:1263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu H, Hu X, Feng S, Jian Z, Xu X, Gu L, et al. The hypoxia-related gene COL5A1 is a prognostic and immunological biomarker for multiple human tumors. Oxid Med Cell Longev. 2022;2022:6419695.

    PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Zhang J, Wang F, Xu X, Li X, Guan W, et al. Overexpressed COL5A1 is correlated with tumor progression, paclitaxel resistance, and tumor-infiltrating immune cells in ovarian cancer. J Cell Physiol. 2021;236:6907–19.

    Article  CAS  PubMed  Google Scholar 

  25. Nissen NI, Karsdal M, Willumsen N. Collagens and Cancer associated fibroblasts in the reactive stroma and its relation to Cancer biology. J Exp Clin Cancer Res. 2019;38:115.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soltani A, Torki S, Ghahfarokhi MS, Jami MS, Ghatrehsamani M. Targeting the phosphoinositide 3-kinase/AKT pathways by small molecules and natural compounds as a therapeutic approach for breast cancer cells. Mol Biol Rep. 2019;46:4809–16.

    Article  CAS  PubMed  Google Scholar 

  27. Wu DM, Zhang T, Liu YB, Deng SH, Han R, Liu T, et al. The PAX6-ZEB2 axis promotes metastasis and cisplatin resistance in non-small cell lung cancer through PI3K/AKT signaling. Cell Death Dis. 2019;10:349.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rahmani F, Ziaeemehr A, Shahidsales S, Gharib M, Khazaei M, Ferns GA, et al. Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma. J Cell Physiol. 2020;235:4146–52.

    Article  CAS  PubMed  Google Scholar 

  29. Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020;11:797.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shen L, Yang M, Lin Q, Zhang Z, Zhu B, Miao C. COL11A1 is overexpressed in recurrent non-small cell lung cancer and promotes cell proliferation, migration, invasion and drug resistance. Oncol Rep. 2016;36:877–85.

    Article  CAS  PubMed  Google Scholar 

  31. Muszynska A, Wolczynski S, Palka J. The mechanism for anthracycline-induced inhibition of collagen biosynthesis. Eur J Pharmacol. 2001;411:17–25.

    Article  CAS  PubMed  Google Scholar 

  32. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010;70:5728–39.

    Article  CAS  PubMed  Google Scholar 

  33. De Logu F, Ugolini F, Iannone LF, Simi S, Maio V, de Giorgi V, et al. Spatial proximity and relative distribution of tumor-infiltrating lymphocytes and macrophages predict survival in melanoma. Lab Investig. 2023;103:100259.

    Article  PubMed  Google Scholar 

  34. Wang X, Wang J, Zhao J, Wang H, Chen J, Wu J. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics. 2022;12:963–75.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiang Y, Qu X, Zhang M, Zhang L, Yang T, Ma M, et al. Identification of a six-gene prognostic signature for bladder cancer associated macrophage. Front Immunol. 2022;13:930352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu CS, Shiau AL, Su BH, Hsu TS, Wang CT, Su YC, et al. Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer. J Hematol Oncol. 2020;13:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol. 2014;15:423–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Braune J, Weyer U, Hobusch C, Mauer J, Bruning JC, Bechmann I, et al. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol. 2017;198:2927–34.

    Article  CAS  PubMed  Google Scholar 

  39. Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, et al. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun. 2022;42:401–34.

    Article  Google Scholar 

  40. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012;21:488–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011;25:2465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA. 2011;108:12425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Batlle E, Massague J. Transforming growth factor-beta signaling in immunity and cancer. Immunity. 2019;50:924–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, et al. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-beta activation. Cancer Cell. 2023;41:757–75.e710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L, Li Q, Yang J, Xu P, Xuan Z, Xu J, et al. Cytosolic TGM2 promotes malignant progression in gastric cancer by suppressing the TRIM21-mediated ubiquitination/degradation of STAT1 in a GTP binding-dependent modality. Cancer Commun. 2023;43:123–49.

    Article  CAS  Google Scholar 

  47. Li X, Ma Y, Wu J, Ni M, Chen A, Zhou Y, et al. Thiol oxidative stress-dependent degradation of transglutaminase2 via protein S-glutathionylation sensitizes 5-fluorouracil therapy in 5-fluorouracil-resistant colorectal cancer cells. Drug Resist Updat. 2023;67:100930.

    Article  CAS  PubMed  Google Scholar 

  48. Li M, Song D, Chen X, Wang X, Xu L, Yang M, et al. RSL3 triggers glioma stem cell differentiation via the Tgm2/AKT/ID1 signaling axis. Biochim Biophys Acta Mol Basis Dis. 2022;1868:166529.

    Article  CAS  PubMed  Google Scholar 

  49. Malkomes P, Lunger I, Oppermann E, Abou-El-Ardat K, Oellerich T, Gunther S, et al. Transglutaminase 2 promotes tumorigenicity of colon cancer cells by inactivation of the tumor suppressor p53. Oncogene. 2021;40:4352–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang S, Yao HF, Li H, Su T, Jiang SH, Wang H, et al. Transglutaminases are oncogenic biomarkers in human cancers and therapeutic targeting of TGM2 blocks chemoresistance and macrophage infiltration in pancreatic cancer. Cell Oncol. 2023;46:1473–92.

    Article  CAS  Google Scholar 

  51. Condello S, Prasad M, Atwani R, Matei D. Tissue transglutaminase activates integrin-linked kinase and beta-catenin in ovarian cancer. J Biol Chem. 2022;298:102242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marquardt V, Theruvath J, Pauck D, Picard D, Qin N, Blumel L, et al. Tacedinaline (CI-994), a class I HDAC inhibitor, targets intrinsic tumor growth and leptomeningeal dissemination in MYC-driven medulloblastoma while making them susceptible to anti-CD47-induced macrophage phagocytosis via NF-kB-TGM2 driven tumor inflammation. J Immunother Cancer. 2023;11:e005871.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank TCGA,GEO and Metabric databases for providing data.

Funding

This work was supported by Special Foundation for Taishan Scholars (No. ts20190971), Foundation from Clinical Research Center of Shandong University (No. 2020SDUCRCA015), National Natural Science Foundation of China (Nos. 81902697, 82373267, and 81972475).

Author information

Authors and Affiliations

Authors

Contributions

QFY and XC designed the experiment; XC, CAM, YML, YRL, TC and DL performed the experiments; XC and CAM performed data analysis and prepared the figures/tables; DL, WJZ, LJW collected samples; XC, CAM and DWH wrote the paper; XC, NZ and QFY revised the paper.

Corresponding author

Correspondence to Qifeng Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ma, C., Li, Y. et al. COL5A1 promotes triple-negative breast cancer progression by activating tumor cell-macrophage crosstalk. Oncogene (2024). https://doi.org/10.1038/s41388-024-03030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03030-3

Search

Quick links