Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell landscape of undifferentiated pleomorphic sarcoma

Abstract

Undifferentiated pleomorphic sarcoma (UPS) is a highly aggressive malignant soft tissue tumor with a poor prognosis; however, the identity and heterogeneity of tumor populations remain elusive. Here, eight major cell clusters were identified through the RNA sequencing of 79,569 individual cells of UPS. UPS originates from mesenchymal stem cells (MSCs) and features undifferentiated subclusters. UPS subclusters were predicted to exist in two bulk RNA datasets, and had a prognostic value in The Cancer Genome Atlas (TCGA) dataset. The functional heterogeneity of malignant UPS cells and the immune microenvironment were characterized. Additionally, the fused cells were innovatively detected by expressing both monocyte/macrophage markers and other subcluster-associated genes. Based on the ligand–receptor interaction analysis, cellular interactions with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) were abundant. Furthermore, 73% of patients with UPS (48/66) showed positive EGFR expression, which was associated with a poor prognosis. EGFR blockade with cetuximab inhibited tumor growth in a patient-derived xenograft model. Our transcriptomic studies delineate the landscape of UPS intratumor heterogeneity and serve as a foundational resource for further discovery and therapeutic exploration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell transcriptomic profiling of undifferentiated pleomorphic sarcoma (UPS).
Fig. 2: Single-cell transcriptomic profiling of tumor cells, fibroblasts, and mesenchymal stem cells (MSCs).
Fig. 3: Developmental trajectories of UPS.
Fig. 4: UPS is characterized by undifferentiated subclusters with different prognoses.
Fig. 5: Non-negative matrix factorization (NMF) programs reveal functional heterogeneity of UPS malignant cells.
Fig. 6: Single-cell transcriptomic profiling of T cells in UPS.
Fig. 7: Cell fusion is a new pathological feature of UPS.
Fig. 8: Anti-epidermal growth factor receptor (EGFR) treatment in UPS.

Similar content being viewed by others

Data availability

Single-cell sequencing data of human UPS specimens has been deposited at Genome Sequence Archive (GSA) with the identifier: HRA004389. Bulk expression data from complex genetics sarcomas including UPS was downloaded from GSE:21050. TCGA-SARC RNA-seq and survival data were downloaded from the Genomic Data Commons (GDC) (https://portal.gdc.cancer.gov/).

Code availability

Codes used to conduct analyses and generate results of this article is deposited at https://github.com/luyifei111/scUPS.

References

  1. Fletcher C, Bridge JA, Hogendoorn PCW, Mertens F. WHO classification of tumours of soft tissue and bone: WHO classification of tumours, 5. Geneve, Switzerland: World Health Organization; 2013.

  2. Robles-Tenorio A, Solis-Ledesma G. Undifferentiated pleomorphic sarcoma. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022.

  3. Canter RJ, Beal S, Borys D, Martinez SR, Bold RJ, Robbins AS. Interaction of histologic subtype and histologic grade in predicting survival for soft-tissue sarcomas. J Am Coll Surg. 2010;210:191–8.e192.

    Article  PubMed  Google Scholar 

  4. Zhang Y, Wang D, Peng M, Tang L, Ouyang J, Xiong F, et al. Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res CR. 2021;40:81.

    Article  CAS  PubMed  Google Scholar 

  5. Steele CD, Tarabichi M, Oukrif D, Webster AP, Ye H, Fittall M, et al. Undifferentiated sarcomas develop through distinct evolutionary pathways. Cancer Cell. 2019;35:441–56.e448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cancer Genome Atlas Research Network. Electronic address edsc, Cancer Genome Atlas Research N. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell. 2017;171:950–65.e928.

    Article  Google Scholar 

  7. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat Biotechnol. 2021;39:599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Noutsias M, Rohde M, Göldner K, Block A, Blunert K, Hemaidan L, et al. Expression of functional T-cell markers and T-cell receptor Vbeta repertoire in endomyocardial biopsies from patients presenting with acute myocarditis and dilated cardiomyopathy. Eur J Heart Fail. 2011;13:611–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ren Q, Ren L, Ren C, Liu X, Dong C, Zhang X. Platelet endothelial cell adhesion molecule-1 (PECAM1) plays a critical role in the maintenance of human vascular endothelial barrier function. Cell Biochem Funct. 2015;33:560–5.

    Article  PubMed  Google Scholar 

  10. Shen J, Shrestha S, Yen Y-H, Scott MA, Soo C, Ting K, et al. The pericyte antigen RGS5 in perivascular soft tissue tumors. Hum Pathol. 2016;47:121–31.

    Article  CAS  PubMed  Google Scholar 

  11. Maaninka K, Lappalainen J, Kovanen PT. Human mast cells arise from a common circulating progenitor. J Allergy Clin Immunol. 2013;132:463–9.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell. 2021;184:792–809.

  13. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8:329–37.

  14. Lv F-J, Tuan RS, Cheung KMC, Leung VYL. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–19.

    Article  CAS  PubMed  Google Scholar 

  15. Wu Y-H, Huang Y-F, Chang T-H, Chen C-C, Wu P-Y, Huang S-C, et al. COL11A1 activates cancer-associated fibroblasts by modulating TGF-β3 through the NF-κB/IGFBP2 axis in ovarian cancer cells. Oncogene. 2021;40:4503–19.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L-Z, Huang L-Y, Huang A-L, Liu J-X, Yang F. CRIP1 promotes cell migration, invasion and epithelial-mesenchymal transition of cervical cancer by activating the Wnt/β‑catenin signaling pathway. Life Sci. 2018;207:420–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ou L, Fang L, Tang H, Qiao H, Zhang X, Wang Z. Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep. 2016;13:720–30.

    Article  CAS  PubMed  Google Scholar 

  18. Traustadóttir GÁ, Lagoni LV, Ankerstjerne LBS, Bisgaard HC, Jensen CH, Andersen DC. The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor Rev. 2019;46:17–27.

    Article  PubMed  Google Scholar 

  19. Pittaway JFH, Lipsos C, Mariniello K, Guasti L. The role of delta-like non-canonical Notch ligand 1 (DLK1) in cancer. Endocr Relat Cancer. 2021;28:R271–287.

    Article  CAS  PubMed  Google Scholar 

  20. Suda T, Yamashita T, Sunagozaka H, Okada H, Nio K, Sakai Y et al. Dickkopf-1 promotes angiogenesis and is a biomarker for hepatic stem cell-like hepatocellular carcinoma. Int J Mol Sci. 2022;23:2801.

  21. Matushansky I, Hernando E, Socci ND, Mills JE, Matos TA, Edgar MA, et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest. 2007;117:3248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566:496–502.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu K, Cai L, Cui C, de Los Toyos JR, Anastassiou D. Single-cell analysis reveals the pan-cancer invasiveness-associated transition of adipose-derived stromal cells into COL11A1-expressing cancer-associated fibroblasts. PLoS Comput Biol. 2021;17:e1009228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adachi O, Sugii H, Itoyama T, Fujino S, Kaneko H, Tomokiyo A et al. Decorin promotes osteoblastic differentiation of human periodontal ligament stem cells. Molecules. 2022;27:8224.

  25. Song N-J, Kim S, Jang B-H, Chang S-H, Yun UJ, Park K-M, et al. Small molecule-induced complement factor D (adipsin) promotes lipid accumulation and adipocyte differentiation. PLoS ONE. 2016;11:e0162228.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gulati GS, Sikandar SS, Wesche DJ, Manjunath A, Bharadwaj A, Berger MJ, et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science. 2020;367:405–11.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keung EZ, Burgess M, Salazar R, Parra ER, Rodrigues-Canales J, Bolejack V, et al. Correlative analyses of the SARC028 trial reveal an association between sarcoma-associated immune infiltrate and response to pembrolizumab. Clin Cancer Res. 2020;26:1258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini C, et al. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell. 2019;178:346–60.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wisdom AJ, Mowery YM, Hong CS, Himes JE, Nabet BY, Qin X, et al. Single cell analysis reveals distinct immune landscapes in transplant and primary sarcomas that determine response or resistance to immunotherapy. Nat Commun. 2020;11:6410.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barata JT, Durum SK, Seddon B. Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol. 2019;20:1584–93.

    Article  CAS  PubMed  Google Scholar 

  31. Tessaro FHG, Ko EY, De Simone M, Piras R, Broz MT, Goodridge HS, et al. Single-cell RNA-seq of a soft-tissue sarcoma model reveals the critical role of tumor-expressed MIF in shaping macrophage heterogeneity. Cell Rep. 2022;39:110977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lartigue L, Merle C, Lagarde P, Delespaul L, Lesluyes T, Le Guellec S, et al. Genome remodeling upon mesenchymal tumor cell fusion contributes to tumor progression and metastatic spread. Oncogene. 2020;39:4198–211.

    Article  CAS  PubMed  Google Scholar 

  33. Delespaul L, Gélabert C, Lesluyes T, Le Guellec S, Pérot G, Leroy L, et al. Cell-cell fusion of mesenchymal cells with distinct differentiations triggers genomic and transcriptomic remodelling toward tumour aggressiveness. Sci Rep. 2020;10:21634.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delespaul L, Merle C, Lesluyes T, Lagarde P, Le Guellec S, Pérot G, et al. Fusion-mediated chromosomal instability promotes aneuploidy patterns that resemble human tumors. Oncogene. 2019;38:6083–94.

    Article  CAS  PubMed  Google Scholar 

  35. Zheng S, Liu Q, Liu T, Yang L, Zhang Q, Shen T, et al. NME4 modulates PD-L1 expression via the STAT3 signaling pathway in squamous cell carcinoma. Biochem Biophys Res Commun. 2020;526:29–34.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng S, Liu T, Liu Q, Yang L, Zhang Q, Han X, et al. Widely targeted metabolomic analyses unveil the metabolic variations after stable knock-down of NME4 in esophageal squamous cell carcinoma cells. Mol Cell Biochem. 2020;471:81–9.

    Article  CAS  PubMed  Google Scholar 

  37. Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT, et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv. 2018;4:eaat7828.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Kloc M, Subuddhi A, Uosef A, Kubiak JZ, Ghobrial RM. Monocyte-macrophage lineage cell fusion. Int J Mol Sci. 2022;23:6553.

  39. Zhang Y, Du W, Chen Z, Xiang C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp Cell Res. 2017;359:449–57.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 2020;181:442–59.e29.

  41. Zawada AM, Rogacev KS, Rotter B, Winter P, Marell R-R, Fliser D, et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood. 2011;118:e50–61.

    Article  CAS  PubMed  Google Scholar 

  42. Wang Z, Dai Z, Zheng L, Xu B, Zhang H, Fan F, et al. Ferroptosis activation scoring model assists in chemotherapeutic agents’ selection and mediates cross-talk with immunocytes in malignant glioblastoma. Front Immunol. 2021;12:747408.

  43. Liu X, Xu J, Li F, Liao Z, Ren Z, Zhu L, et al. Efficacy and safety of the VEGFR2 inhibitor Apatinib for metastatic soft tissue sarcoma: Chinese cohort data from NCT03121846. Biomed Pharmacother. 2020;122:109587.

    Article  CAS  PubMed  Google Scholar 

  44. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Osum M, Kalkan R. Cancer stem cells and their therapeutic usage. Adv Exp Med Biol. 2023;1436:69–85.

    Article  CAS  PubMed  Google Scholar 

  46. Sieler M, Weiler J, Dittmar T. Cell-cell fusion and the roads to novel properties of tumor hybrid cells. Cells. 2021;10:1465.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Laberge GS, Duvall E, Haedicke K, Pawelek J. Leukocyte-cancer cell fusion-genesis of a deadly journey. Cells. 2019;8:170.

  48. Ray-Coquard I, Le Cesne A, Whelan JS, Schoffski P, Bui BN, Verweij J, et al. A phase II study of gefitinib for patients with advanced HER-1 expressing synovial sarcoma refractory to doxorubicin-containing regimens. Oncologist. 2008;13:467–73.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng Y, Shen Z, Gao Y, Chen F, Xu H, Mo Q, et al. Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas. Nat Commun. 2022;13:2724.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xie X, Ghadimi MPH, Young ED, Belousov R, Zhu Q-S, Liu J, et al. Combining EGFR and mTOR blockade for the treatment of epithelioid sarcoma. Clin Cancer Res. 2011;17:5901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong R, Yang R, Zhan Y, Lai H-D, Ye C-J, Yao X-Y, et al. Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma. Cancer Cell. 2020;38:716–33.e6.

    Article  CAS  PubMed  Google Scholar 

  52. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309–13.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8:281–91.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20:163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020;38:1408–14.

    Article  CAS  PubMed  Google Scholar 

  58. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71.

    Article  PubMed  Google Scholar 

  59. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23:1846–7.

    Article  PubMed  Google Scholar 

  60. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.

    Article  Google Scholar 

  62. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fleming SJ, Chaffin MD, Arduini A, Akkad A-D, Banks E, Marioni JC, et al. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. Nat Methods. 2023;20:1323–35.

    Article  CAS  PubMed  Google Scholar 

  64. Chuah BY, Putti T, Salto-Tellez M, Charlton A, Iau P, Buhari SA, et al. Serial changes in the expression of breast cancer-related proteins in response to neoadjuvant chemotherapy. Ann Oncol. 2011;22:1748–54.

    Article  CAS  PubMed  Google Scholar 

  65. Tan Z, Gao L, Wang Y, Yin H, Xi Y, Wu X, et al. PRSS contributes to cetuximab resistance in colorectal cancer. Sci Adv. 2020;6:eaax5576.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to appreciate BioRender.com, with which some of the icons and elements of diagrams were created. This study was supported by grants from the Genertec Guozhong Healthcare (Grant No. GZKJ-KJXX-QTHT-20220016) (Y.C.), Industry-University Research Innovation Foundation of Science and Technology Development Center of the Ministry of Education (Grant No. 2021JH013) (Y.C.), National Natural Science Foundation of China (Grant No.82373385) (Y.C.).

Author information

Authors and Affiliations

Authors

Contributions

Yifei Lu: Methodology, Software, Validation, Formal analysis, Investigation, Data Curation, Writing - Original Draft, Visualization. Deqian Chen: Methodology, Software, Data Curation, Visualization. Bingnan Wang: Validation, Investigation. Wenjun Chai: Methodology, Visualization. Mingxia Yan: Validation, Visualization. Yong Chen: Conceptualization, Funding acquisition. Yong Zhan: Validation, Data Curation. Ran Yang: Data Curation. Enqing Zhou: Data Curation. Shuyang Dai: Data Curation. Yi Li: Data Curation. Rui Dong: Conceptualization, Methodology, Investigation, Resources, Writing - Review & Editing, Supervision, Project administration Biqiang Zheng: Conceptualization, Methodology, Investigation, Resources, Writing - Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Rui Dong or Biqiang Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Chen, D., Wang, B. et al. Single-cell landscape of undifferentiated pleomorphic sarcoma. Oncogene (2024). https://doi.org/10.1038/s41388-024-03001-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03001-8

Search

Quick links